• Українська
  • English

< | >

Current issue   Ukr. J. Phys. 2014, Vol. 58, N 9, p.841-845
https://doi.org/10.15407/ujpe58.09.0841    Paper

Thakur D.P.1, Barde N.P.2, Bardapurkar P.P.3, Khairnar R.S.1

1 School of Physical Sciences, Swami Ramanand Teerth Marathwada University
(Nanded, M.S, India 431606)
2 Badrinarayan Barwale Mahavidyala
(Jalna, M.S, India 431203)
3 S.N. Arts, D.J. Malpani Commerce & B.N. Sarda Science College
(Sangamner, MS, India 422605; e-mail: pranavbardapurkar@yahoo.com)

EA Density Functional Study of the Adsorption of Carbon Dioxide Molecule on Graphene

Section: Solid matter
Original Author's Text: English

Abstract: The physisorption of a CO2 molecule on a graphene sheet using ab initio density functional theory is investigated. The geometrical structure of graphene, including various parameters viz. the bond lengths and bond angles are calculated for a graphene sheet under the adsorption of a CO2 gas. Additionally, the density of states of a graphene sheet is calculated with & without adsorption of CO2 molecules. It is observed that the CO2 molecule is adsorbed on the graphene sheet with the adsorption energy of about 61.7 meV or less. The HOMO-LUMO energy levels of the graphene sheet before and after the adsorption of a CO2 molecule remain unaltered. Therefore, the graphene sheet cannot detect a CO2 molecule owing to their weak interaction.

Key words: graphene, adsorption; density functional theory, CO2.


  1. Adsorption: Theory, Modeling and Analysis, edited by J. T´oth (M. Dekker, New York, 2001).
  2. F. Rouquerol, L. Rouquerol, and K. Sing, Adsorption by Powders and Porous Solids: Principles, Methodology, and Applications (Academic Press, London, 1999).
  3. A. Hinchliffe, Molecular Modelling for Beginners (Wiley, New York, 2008).
  4. D.S. Sholl and J.A. Steckel, Density Functional Theory: A Practical Introduction (Wiley, New York, 2009).
  5. K. Capelle, Braz. J. Phys. 36, 4A (2006).
  6. W. Kohn and L.J. Sham, Phys. Rev. 140, A1133 (1965).
  7. G. Lee, B. Lee, J. Kim, and K. Cho, J. Phys. Chem. C 113 (2009).
  8. P.V.C. Medeiros, F. de Brito Mota, A.J.S. Mascarenhas, and C.M.C. de Castilho, Nanotechnology, 21, 485701 (2010).
  9. O. Leenaerts, B. Partoens, and F.M. Peeters, Phys. Rev. B 77, 125416 (2008).
  10. S.J. Gong, W. Sheng, Z.Q. Yang, and J.H. Chu, J. Phys.: Condens. Matter 22, 245502 (2010).
  11. Bing Huang, Zuanji Li, Zhirong Liu, Gang Zhou, Shaogang Hao, Jian Wo, Bing Lin Gu, and L. Wenhui, J. Phys. Chem. C 112, 13442 (2008).
  12. A. Montoya, F. Mondragon, and Thanh N. Truong, Carbon, 41, 29 (2003).
  13. Z.M. Ao, J. Yang, S. Li, and Q. Jiang, Chem. Phys. Lett. 461, 4 (2008).
  14. K.D. Hammonds, I.R. McDonald, and D.J. Tildesley, Mol. Phys. 70, 2 (1990).
  15. Jijun Zhao, Alper Buldum, Jie Han, and Jian Ping Lu, Nanotechnology, 13, 195 (2002).
  16. I. Carrilla, E. Rangel, and L.F. Maga˜na, Carbon, 47, 11 (2009).
  17. M.J. Frisch et al., Gaussian 03 (Gaussian, Pittsburgh, 2003).