• Українська
  • English

< | >

Current issue   Ukr. J. Phys. 2014, Vol. 58, N 9, p.841-845
https://doi.org/10.15407/ujpe58.09.0841    Paper

Thakur D.P.1, Barde N.P.2, Bardapurkar P.P.3, Khairnar R.S.1

1 School of Physical Sciences, Swami Ramanand Teerth Marathwada University
(Nanded, M.S, India 431606)
2 Badrinarayan Barwale Mahavidyala
(Jalna, M.S, India 431203)
3 S.N. Arts, D.J. Malpani Commerce & B.N. Sarda Science College
(Sangamner, MS, India 422605; e-mail: pranavbardapurkar@yahoo.com)

EA Density Functional Study of the Adsorption of Carbon Dioxide Molecule on Graphene

Section: Solid matter
Original Author's Text: English

Abstract: The physisorption of a CO2 molecule on a graphene sheet using ab initio density functional theory is investigated. The geometrical structure of graphene, including various parameters viz. the bond lengths and bond angles are calculated for a graphene sheet under the adsorption of a CO2 gas. Additionally, the density of states of a graphene sheet is calculated with & without adsorption of CO2 molecules. It is observed that the CO2 molecule is adsorbed on the graphene sheet with the adsorption energy of about 61.7 meV or less. The HOMO-LUMO energy levels of the graphene sheet before and after the adsorption of a CO2 molecule remain unaltered. Therefore, the graphene sheet cannot detect a CO2 molecule owing to their weak interaction.

Key words: graphene, adsorption; density functional theory, CO2.

References:

  1. Adsorption: Theory, Modeling and Analysis, edited by J. T´oth (M. Dekker, New York, 2001).
  2. F. Rouquerol, L. Rouquerol, and K. Sing, Adsorption by Powders and Porous Solids: Principles, Methodology, and Applications (Academic Press, London, 1999).
  3. A. Hinchliffe, Molecular Modelling for Beginners (Wiley, New York, 2008).
  4. D.S. Sholl and J.A. Steckel, Density Functional Theory: A Practical Introduction (Wiley, New York, 2009).
     https://doi.org/10.1002/9780470447710
  5. K. Capelle, Braz. J. Phys. 36, 4A (2006).
     https://doi.org/10.1590/S0103-97332006000700035
  6. W. Kohn and L.J. Sham, Phys. Rev. 140, A1133 (1965).
     https://doi.org/10.1103/PhysRev.140.A1133
  7. G. Lee, B. Lee, J. Kim, and K. Cho, J. Phys. Chem. C 113 (2009).
  8. P.V.C. Medeiros, F. de Brito Mota, A.J.S. Mascarenhas, and C.M.C. de Castilho, Nanotechnology, 21, 485701 (2010).
     https://doi.org/10.1088/0957-4484/21/48/485701
  9. O. Leenaerts, B. Partoens, and F.M. Peeters, Phys. Rev. B 77, 125416 (2008).
     https://doi.org/10.1103/PhysRevB.77.125416
  10. S.J. Gong, W. Sheng, Z.Q. Yang, and J.H. Chu, J. Phys.: Condens. Matter 22, 245502 (2010).
     https://doi.org/10.1088/0953-8984/22/24/245502
  11. Bing Huang, Zuanji Li, Zhirong Liu, Gang Zhou, Shaogang Hao, Jian Wo, Bing Lin Gu, and L. Wenhui, J. Phys. Chem. C 112, 13442 (2008).
     https://doi.org/10.1021/jp8021024
  12. A. Montoya, F. Mondragon, and Thanh N. Truong, Carbon, 41, 29 (2003).
     https://doi.org/10.1016/S0008-6223(02)00249-X
  13. Z.M. Ao, J. Yang, S. Li, and Q. Jiang, Chem. Phys. Lett. 461, 4 (2008).
     https://doi.org/10.1016/j.cplett.2008.07.039
  14. K.D. Hammonds, I.R. McDonald, and D.J. Tildesley, Mol. Phys. 70, 2 (1990).
     https://doi.org/10.1080/00268979000100931
  15. Jijun Zhao, Alper Buldum, Jie Han, and Jian Ping Lu, Nanotechnology, 13, 195 (2002).
     https://doi.org/10.1088/0957-4484/13/2/312
  16. I. Carrilla, E. Rangel, and L.F. Maga˜na, Carbon, 47, 11 (2009).
  17. M.J. Frisch et al., Gaussian 03 (Gaussian, Pittsburgh, 2003).