• Українська
  • English

< | >

Current issue   Ukr. J. Phys. 2014, Vol. 58, N 9, p.888-893
https://doi.org/10.15407/ujpe58.09.0888-->    Paper

Bauzha O.S.

Taras Shevchenko National University of Kyiv
(64, Volodymyrs’ka Str., Kyiv 01033, Ukraine; e-mail: asb@univ.kiev.ua)

Magnetic Properties of Quantum Rings in the Presence of Spin-Orbit and Electron-Electron Interactions

Section: Nanosystems
Original Author's Text: Ukrainian

Abstract: The separate and combined influences of the spin-orbit and electron-electron interactions on the electron magnetization in quantum rings have been studied theoretically on the basis of the spin-density-functional theory and the Kohn–Sham equation used for the calculation of electron states in two-dimensional parabolic quantum rings containing from two to six electrons. The magnetization of electrons in a quantum ring is calculated at zero temperature. The revealed abrupt changes in the ring magnetization are associated with the crossing of electron states that occurs if the spin-orbit and/or electron-electron interactions are taken into consideration.

Key words: Kohn–Sham, qubit, Hartree–Fock, Broyden, Rashba, quantum dots, spin-orbit splitting.

References:

  1. S.A. Wolf, D. Awschalom, R.A. Buhrman, J.M. Daughton, S. von Molnar, M.L. Roukes, A.Y. Chtchelkanova, and D.M. Treger, Science 294, 1488 (2001).
     https://doi.org/10.1126/science.1065389
  2. V.A. Nikolyuk and I.V. Ignatiev, Fiz. Tekh. Poluprovodn. 41, 1443 (2007).
  3. R. Hanson, L.P. Kouwenhoven, J.R. Petta, S. Tarucha, and L.M.K. Vandersypen, Rev. Mod. Phys. 79, 1217 (2007).
     https://doi.org/10.1103/RevModPhys.79.1217
  4. O. Voskoboynikov, O. Bauga, C.P. Lee, and O. Tretyak, J. Appl. Phys. 94, 5891 (2003).
     https://doi.org/10.1063/1.1614426
  5. O.S. Bauzha, O.M. Voskoboynikov, and O.V. Tretyak, Visn. Kyiv. Univ. Ser. Fiz. Mat. Nauky 2, 347 (2005).
  6. O.S. Bauzha, O.M. Voskoboynikov, O.V. Tretyak, and O.S. Sinyavskij, Ukr. Fiz. Zh. 51, 902 (2006).
  7. Yu.A. Bychkov and E.I. Rashba, J. Phys. C 17, 6039 (1984).
  8. E. de Andrada, E.A. Silva, G.C. La Rocca, and F. Bassani, Phys. Rev. B 55, 16293 (1997).
     https://doi.org/10.1103/PhysRevB.55.16293
  9. W. Kohn and L.J. Sham, Phys. Pev. 140, 1133 (1965).
  10. B. Tanatar and D.M. Ceperley, Phys. Rev. B 39, 5005 (1989).
     https://doi.org/10.1103/PhysRevB.39.5005
  11. T.F. Jiang, X.-M. Tong, and S.-I. Chu, Phys. Rev. B 63, 045317 (2001).
     https://doi.org/10.1103/PhysRevB.63.045317
  12. S. Nagaraja, J.-P. Leburton, and R.M. Martin, Phys. Rev. B 60, 8759 (1999).
     https://doi.org/10.1103/PhysRevB.60.8759
  13. Ph. Matagne, and J.-P. Leburton, Phys.Rev. B 65, 155311 (2002).
     https://doi.org/10.1103/PhysRevB.65.155311
  14. F. Pederiva, C.J. Umrigar, and E. Lipparini, Phys. Rev. B 62, 8120 (2000).
     https://doi.org/10.1103/PhysRevB.62.8120
  15. W.-C. Tan and J.C. Inkson, Semicond. Sci. Technol. 11, 1635 (1996).
     https://doi.org/10.1088/0268-1242/11/11/001
  16. W.-C. Tan and J.C. Inkson, Phys. Rev. B 60, 5626 (1999).
     https://doi.org/10.1103/PhysRevB.60.5626
  17. O. Voskoboynikov, C.P. Lee, and O. Tretyak, Phys. Rev. B 63, 165306 (2001).
     https://doi.org/10.1103/PhysRevB.63.165306
  18. G. Bastard, Wave Mechanics Applied to Semiconductor Heterostructures (EDP Science, Paris, 1996).
  19. L.M. Roth, B. Lax, and S. Zwerdling, Phys. Rev. 114, 90 (1959).
     https://doi.org/10.1103/PhysRev.114.90
  20. A.V. Moroz and C.H.W. Barnes, Phys. Rev. B 61, R2464 (2000).
     https://doi.org/10.1103/PhysRevB.61.R2464
  21. L.I. Magarill, D.A. Romanov, and A.V. Chaplik, Zh. Eksp. ` Teor. Fiz. 86, 771 (1998).
  22. L.I. Magarill and A.V. Chaplik, Zh. Eksp. Teor. Fiz. ` 88, 815 (1999).
  23. D. Singh, H. Krakauer, and C.S. Wang, Phys. Rev. B 34, 8391 (1986).
     https://doi.org/10.1103/PhysRevB.34.8391
  24. M.A. Cusack, P.R. Briddon, and M. Jaros, Phys. Rev. B 54, 2300 (1996).
     https://doi.org/10.1103/PhysRevB.54.R2300
  25. B.C. Lee, O. Voskoboynikov, and C.P. Lee, Physica E 24, 87 (2004).
     https://doi.org/10.1016/j.physe.2004.04.030