• Українська
  • English

< | >

Current issue   Ukr. J. Phys. 2014, Vol. 58, N 9, p.811-826
https://doi.org/10.15407/ujpe58.09.0811    Paper

Gorkavenko V.M., Rudenok I.V., Vilchynskiy S.I.

Faculty of Physics, Taras Shevchenko National University of Kyiv
(64, Volodymyrs’ka Str., Kyiv 01601, Ukraine; e-mail: gorka@univ.kiev.ua, igrudenok@gmail.com, sivil@univ.kiev.ua)

Generation of the Leptonic Asymmetry in the Sterile Neutrino Hadronic Decays

Section: Fields and elementary particles
Original Author's Text: English

Abstract: We consider the leptonic asymmetry generation in the ?MSM via hadronic decays of sterile neutrinos at T TEW , when the masses of two heavier sterile neutrinos are between m? and 2 GeV. The choice of the upper mass bound is motivated by the absence of direct experimental searches for singlet fermions with greater mass. We carried out computations at zero temperature and ignored the background effects. Combining constraints of a sufficient value of the leptonic asymmetry for the production of dark matter particles, the condition for sterile neutrino to be out of thermal equilibrium, and existing experimental data, we conclude that it can be satisfied only for the mass of a heavier sterile neutrino in the range 1.4 GeV . M < 2 GeV and only for the case of a normal hierarchy for the active neutrino mass.

Key words: leptonic asymmetry, sterile neutrino, hadronic decays.

References:

  1. S. Weinberg, Phys. Rev. Lett. 19, 1264 (1967);
     https://doi.org/10.1103/PhysRevLett.19.1264
     
    S.L. Glashow, Nucl. Phys. 22, 579 (1961);
     https://doi.org/10.1016/0029-5582(61)90469-2
     
    A. Salam, in Proceedings of the Nobel Symposium Held in 1968 at Lerum, Sweden, Stockholm, 1968, pp. 367–377.
  2. Particle Data Group, http://pdg.lbl.gov.
  3. A. Strumia and F. Vissani, arXiv: hep-ph/0606054.
  4. A. Boyarsky, O. Ruchayskiy, and M. Shaposhnikov, Ann. Rev. Nucl. Part. Sci. 59, 191 (2009).
     https://doi.org/10.1146/annurev.nucl.010909.083654
  5. T. Asaka and M. Shaposhnikov, Phys. Let. B 620, 17 (2005).
     https://doi.org/10.1016/j.physletb.2005.06.020
  6. T. Asaka, S. Blanchet, and M. Shaposhnikov, Phys. Let. B 631, 151 (2005).
     https://doi.org/10.1016/j.physletb.2005.09.070
  7. X.-d. Shi and G. M. Fuller, Phys. Rev. Lett. 82, 2832 (1999).
     https://doi.org/10.1103/PhysRevLett.82.2832
  8. M. Shaposhnikov, JHEP 0808:008 (2008).
  9. M. Laine, M. Shaposhnikov, JCAP 0806:031 (2008).
  10. D. Gorbunov and M. Shaposhnikov, JHEP 0710:015 (2007).
  11. A. Kusenko, S. Pascoli, and D. Semikoz, JHEP 0511:028 (2005).
  12. R.N. Mohapatra and A.Y. Smirnov, Ann. Rev. Nucl. Sci. 56, 569 (2006).
     https://doi.org/10.1146/annurev.nucl.56.080805.140534
  13. T2K Collaboration, Phys. Rev. Lett. 107, 041801 (2011).
  14. T. Frossard, Leptonic Asymmetry in the νMSM, 2010.
  15. S.M. Bilenky and S.T. Petcov, Rev. Mod. Phys. 59, 671 (1987).
     https://doi.org/10.1103/RevModPhys.59.671
  16. M. Shaposhnikov, Nucl. Phys. B 763, 49 (2007).
     https://doi.org/10.1016/j.nuclphysb.2006.11.003
  17. S. Bilenky, C. Giunti, and W. Grimus, Prog. Part. Nucl. Phys. 43, 1 (1999).
     https://doi.org/10.1016/S0146-6410(99)00092-7
  18. V. Gorkavenko and S. Vilchynskiy, Eur. Phys. J. C 70, 1091 (2010).
     https://doi.org/10.1140/epjc/s10052-010-1488-y
  19. S. Davidson, E. Nardi, and Y. Nir, Phys. Rept. 466, 105 (2008).
     https://doi.org/10.1016/j.physrep.2008.06.002
  20. M. Flanz, E. Paschos, U. Sarkar, and J. Weiss, Phys. Lett. B 389, 693 (1996).
     https://doi.org/10.1016/S0370-2693(96)80011-6
  21. L.M. Johnson, D.W. McKay, and T. Bolton, Phys. Rev. D 56, 2970 (1997).
     https://doi.org/10.1103/PhysRevD.56.2970
  22. E.W. Kolb and M.S. Turner The Early Universe, (AddisonWesley, Reading, MA, 1990).
  23. M. Shaposhnikov, Prog. Theor. Phys. 122, 185 (2009).
     https://doi.org/10.1143/PTP.122.185
  24. L. Canetti, M. Drewes, and M. Shaposhnikov, arXiv: 1204.3902, 2012.
  25. L. Canetti, M. Drewes, T. Frossard, and M. Shaposhnikov, arXiv: 1208.4607, 2012.