• Українська
  • English

< | >

Current issue   Ukr. J. Phys. 2014, Vol. 58, N 8, p.758-768
https://doi.org/10.15407/ujpe58.08.0758    Paper

Verba R.V.

Taras Shevchenko National University of Kyiv
(64, Volodymyrs’ka Str., Kyiv 01601, Ukraine; e-mail: verrv@ukr.net)

Spin Waves in Arrays of Magnetic Nanodots with Magnetodipolar Coupling

Section: Solid matter
Original Author's Text: Ukrainian

Abstract: A general theory of collective spin-wave excitations in finite and infinite periodic arrays of magnetic nanodots with magnetodipolar coupling has been developed. Non-uniform profiles of static and dynamic magnetizations in a dot are taken into account. The theory allows the spectra of collective excitations, their damping rates, excitation efficiencies by an external microwave field, and so on to be calculated and the stability of a stationary magnetic array configuration to be analyzed. An efficient technique has been proposed to calculate the spinwave spectra in periodic arrays using the method of projection onto the eigenmodes of a solitary nanodot. The results obtained are compared with experimental data.

Key words: spin wave, magnetic nanodot, magnonic crystal, Gilbert damping parameter, Brillouin zone, Landau–Lifshitz equation.

References:

  1. Advanced Magnetic Nanostructures, edited by D.J. Sellmyer and R. Skomski (Springer, New York, 2006).
  2. J. Stohr and H.C. Siegmann, Magnetism. From Fundamentals to Nanoscale Dynamics (Springer, Berlin, 2006).
  3. M. Francardi, M. Sepioni, A. Gerardino, F. Sansone, G. Gubbiotti, M. Madami, S. Tacchi, and G. Carlotti, Microelectron. Eng. 87, 1614 (2010).
     https://doi.org/10.1016/j.mee.2009.10.039
  4. S. Tacchi, M. Madami, G. Gubbiotti, G. Carlotti, H. Tanigawa, T. Ono, and M.P. Kostylev, Phys. Rev. B 82, 024401 (2010).
     https://doi.org/10.1103/PhysRevB.82.024401
  5. S. Tacchi, F. Montoncello, M. Madami, G. Gubbiotti, G. Carlotti, L. Giovannini, R. Zivieri, F. Nizzoli, S. Jain, A.O. Adeyeye, and N. Singh, Phys. Rev. Lett. 107, 127204 (2011).
     https://doi.org/10.1103/PhysRevLett.107.127204
  6. R. Verba, G. Melkov, V. Tiberkevich, and A. Slavin, Phys. Rev. B 85, 114427 (2012).
     https://doi.org/10.1103/PhysRevB.85.014427
  7. R. Verba, Visn. Kyiv. Univ. Ser. Radiofiz. Electron. 17, 29 (2012).
  8. A.V. Chumak, A.A. Serga, B. Hillebrands, and M.P. Kostylev, Appl. Phys. Lett. 93, 022508 (2008).
     https://doi.org/10.1063/1.2963027
  9. A.V. Chumak, A.A. Serga, S. Wollf, B. Hillebrands, and M.P. Kostylev, Appl. Phys. Lett. 94, 172511 (2009).
     https://doi.org/10.1063/1.3127227
  10. R. Verba, G. Melkov, V. Tiberkevich, and A. Slavin, Appl. Phys. Lett. 100, 192412 (2012).
     https://doi.org/10.1063/1.4714772
  11. J. Topp, D. Heitmann, M.P. Kostylev, and D. Grundler, Phys. Rev. Lett. 104, 207205 (2010).
     https://doi.org/10.1103/PhysRevLett.104.207205
  12. S. Tacchi, M. Madami, G. Gubbiotti, G. Carlotti, S. Goolaup, A.O. Adeyeye, N. Singh, and M.P. Kostylev, Phys. Rev. B 82, 184408 (2010).
     https://doi.org/10.1103/PhysRevB.82.184408
  13. K.Y. Guslienko, R.W. Chantrell, and A.N. Slavin, Phys. Rev. B 68 024422 (2003).
     https://doi.org/10.1103/PhysRevB.68.024422
  14. K.Yu. Guslienko, J. Nanosci. Nanotech. 8, 2745 (2008).
  15. M. Dvornik, P.V. Bondarenko, B.A. Ivanov, and V.V. Kruglyak, J. Appl. Phys. 109, 07B912 (2011).
     https://doi.org/10.1063/1.3562509
  16. R. Zivieri, F. Montoncello, L. Giovannini, F. Nizzoli, S. Tacchi, M. Madami, G. Gubbiotti, G. Carlotti, and A.O. Adeyeye, Phys. Rev. B 83, 054431 (2011).
     https://doi.org/10.1103/PhysRevB.83.054431
  17. R. Zivieri, S. Tacchi, F. Montoncello, L. Giovannini, F. Nizzoli, M. Madami, G. Gubbiotti, G. Carlotti, S. Neusser, G. Duerr, and D. Grundler, Phys. Rev. B 85, 012403 (2012).
     https://doi.org/10.1103/PhysRevB.85.012403
  18. G. Gubbiotti, S. Tacchi, G. Carlotti, N. Singh, S. Goolaup, A.O. Adeyeye, and M. Kostylev, Appl. Phys. Lett. 90, 092503 (2007).
     https://doi.org/10.1063/1.2709909
  19. G. Gubbiotti, S. Tacchi, M. Madami, G. Carlotti, A.O. Adeyeye, and M. Kostylev, J. Phys. D 43, 264003 (2010).
     https://doi.org/10.1088/0022-3727/43/26/264003
  20. R. Arias and D.L. Mills, Phys. Rev. B 70, 104425 (2004).
     https://doi.org/10.1103/PhysRevB.70.104425
  21. P. Chu, D.L. Mills, and R. Arias, Phys. Rev. B 73, 094405 (2006).
     https://doi.org/10.1103/PhysRevB.73.094405
  22. A.Yu. Galkin, B.A. Ivanov, and C.E. Zaspel, Phys. Rev. B 74, 144419 (2006).
     https://doi.org/10.1103/PhysRevB.74.144419
  23. A.G. Gurevich and G.A. Melkov, Magnetization Oscillations and Waves (CRC Press, Boca Raton, 1996).
  24. K.Yu. Guslienko and A.N. Slavin, J. Magn. Magn. Matter. 323, 2418 (2011).
     https://doi.org/10.1016/j.jmmm.2011.05.020
  25. K.Yu. Guslienko, Appl. Phys. Lett. 75, 394 (1999).
     https://doi.org/10.1063/1.124386
  26. J.E.L. Bishop, A.Yu. Galkin, and B.A. Ivanov, Phys. Rev. B 65, 174403 (2002).
     https://doi.org/10.1103/PhysRevB.65.174403
  27. L.D. Landau and E.M. Lifshitz, Quantum Mechanics. Non-Relativistic Theory (Pergamon Press, New York, 1977).
  28. M. Beleggia and M. De Graef, J. Magn. Magn. Mater. 278, 270 (2004).
     https://doi.org/10.1016/j.jmmm.2003.12.1314
  29. N.W. Ashcroft and N.D. Mermin, Solid State Physics (Saunders College, Philadelphia, PA, 1976).
  30. B.A. Kalinikos and A.N. Slavin, J. Phys. C 19, 7013 (1986).
  31. C. Bayer, J. Jorzick, B. Hillebrands, S.O. Demokritov, R. Kouba, R. Bozinoski, A.N. Slavin, K.Y. Guslienko, D.V. Berkov, N.L. Gorn, and M.P. Kostylev, Phys. Rev. B 72, 064427 (2005).
     https://doi.org/10.1103/PhysRevB.72.064427
  32. M. Bailleul, R. Hollinger, and C. Fermon, Phys. Rev. B 73, 104424 (2006).
     https://doi.org/10.1103/PhysRevB.73.104424