• Українська
  • English

< | >

Current issue   Ukr. J. Phys. 2014, Vol. 58, N 8, p.748-757
https://doi.org/10.15407/ujpe58.08.0748    Paper

Bondar M.V.1, Przhonska O.V.1, Kachkovsky O.D.2, Frazer A.3, Morales A.R.3, Belfield K.D.3

1 Institute of Physics
(46, Prosp. Nauky, Kyiv 03028, Ukraine)
2 Insitute of Organic Chemistry
(5, Murmanskaya Str., Kyiv 03094, Ukraine)
3 Department of Chemistry, University of Central Florida
(P.O. Box 162366, Orlando, FL 32816-2366, USA)

New Fluorene-Based Fluorescent Probe with Efficient Two-Photon Absorption

Section: Solid matter
Original Author's Text: English

Abstract: The synthesis, linear photophysical characterization, and two-photon absorption (2PA) properties of new fluorene derivative 3,3'-(pyridine-2,6-diyl)bis(1-(7-(diphenylamino)-9,9-dihexyl- 9H-fluoren-2-yl)propane-1,3-dione) (1) have been presented. The steady-state absorption, fluorescence and excitation anisotropy spectra along with the fluorescence decay kinetics of 1 are obtained in the solvents of different polarities at room temperature with respect to its potential application in bioimaging. The analysis of linear photophysical properties revealed a complicated nature of the main one-photon absorption band of 1, and the strong solvatochromic effect in steady-state fluorescence spectra is observed. The degenerate 2PA spectrum of 1 is measured in the spectral range 570–970 nm with the use of the open aperture Z-scan method under the 1-kHz femtosecond excitation, and the maximum values of two-photon action cross sections ?(100–130) GM are obtained. The nature of the linear absorption and the 2PA bands is analyzed by quantum chemical methods using a Gaussian program package.

Key words: two-photon absorption, fluorene, Z-scan method.

References:

  1. Z.S. An, S.A. Odom, R.F. Kelley, C. Huang, X. Zhang, S. Barlow, L.A. Padilha, J. Fu, S. Webster, D.J. Hagan, E.W. Van Stryland, S.M.R. Wasielewski, and S.R. Marder, J. Phys. Chem. A 113, 5585 (2009).
     https://doi.org/10.1021/jp900152r
  2. M. Rumi, S.J.K. Pond, T. Meyer-Friedrichsen, Q. Zhang, M. Bishop, Y. Zhang, S. Barlow, S.R. Marder, and J.W. Perry, J. Phys. Chem. C 112, 8061 (2008).
     https://doi.org/10.1021/jp710682z
  3. S.A. Odom, S. Webster, L.A. Padilha, D. Peceli, H. Hu, G. Nootz, S.J. Chung, S. Ohira, J.D. Matichak, O.V. Przhonska, A.D. Kachkovski, S. Barlow, J.L. Bredas, H.L. Anderson, D.J. Hagan, E.W. Van Stryland, and S.R. Marder, J. Am. Chem. Soc. 131, 7510 (2009).
     https://doi.org/10.1021/ja901244e
  4. M. Balu, L.A. Padilha, D.J. Hagan, E.W. Van Stryland, S. Yao, K. Belfield, S.J. Zheng, S. Barlow, and S. Marder, J. Opt. Soc. Am. B 25, 159 (2008).
     https://doi.org/10.1364/JOSAB.25.000159
  5. Q.D. Zheng, G.S. He, and P.N. Prasad, Chem. Phys. Lett. 475, 250 (2009).
     https://doi.org/10.1016/j.cplett.2009.05.040
  6. K.D. Belfield and K.J. Schafer, Chem. Mater. 14, 3656 (2002).
     https://doi.org/10.1021/cm010799t
  7. C.C. Corredor, Z.L. Huang, K.D. Belfield, A.R. Morales, and M.V. Bondar, Chem. Mater. 19, 5165 (2007).
     https://doi.org/10.1021/cm071336b
  8. K.J. Schafer, J.M. Hales, M. Balu, K.D. Belfield, E.W. Van Stryland, and D.J. Hagan, J. Photoch. Photobio. A 162, 497 (2004).
     https://doi.org/10.1016/S1010-6030(03)00394-0
  9. K.D. Belfield, M.V. Bondar, F.E. Hernandez, and O.V. Przhonska, J. Phys. Chem. C 112, 5618 (2008).
     https://doi.org/10.1021/jp711950z
  10. P.L. Wu, X.J. Feng, H.L. Tam, M.S. Wong, and K.W. Cheah, J. Am. Chem. Soc. 131, 886 (2009).
     https://doi.org/10.1021/ja806703v
  11. M. Velusamy, J.-Y. Shen, J.T. Lin, Y.-C. Lin, C.-C. Hsieh, C.-H. Lai, C.-W. Lai, M.-L. Ho, Y.-C. Chen, P.-T. Chou and J.-K. Hsiao, Adv. Funct. Mater. 19, 2388 (2009).
     https://doi.org/10.1002/adfm.200900125
  12. S.J. Andrasik, K.D. Belfield, M.V. Bondar, F.E. Hernandez, A.R. Morales, O.V. Przhonska, and S. Yao, Chem. Phys. Chem. 8, 399 (2007).
     https://doi.org/10.1002/cphc.200600568
  13. A. Hayek, F. Bolze, J.F. Nicoud, P.L. Baldeck, and Y. Mely, Photochem. Photobio. Sci. 5, 102 (2006).
     https://doi.org/10.1039/B509843B
  14. A.R. Morales, K.J. Schafer-Hales, A.I. Marcus, and K.D. Belfield, Bioconj. Chem. 19, 2559 (2008).
     https://doi.org/10.1021/bc800415t
  15. K.J. Schafer-Hales, K.D. Belfield, S. Yao, P.K. Frederiksen, J.M. Hales, and P.E. Kolattukudy, J. Biomed. Opt. 10, 051402/1 (2005).
  16. K. Konig, J. Microsc. 200, 83 (2000).
     https://doi.org/10.1046/j.1365-2818.2000.00738.x
  17. R.M. Williams, W.R. Zipfel, and W.W. Webb, Curr. Opin. Chem. Biol. 5, 603 (2001).
     https://doi.org/10.1016/S1367-5931(00)00241-6
  18. D.W. Piston, Trends Cell Biol. 9, 66 (1999).
     https://doi.org/10.1016/S0962-8924(98)01432-9
  19. T.R. Krishna, M. Parent, M.H. Werts, L. Moreaux, S. Gmouh, S. Charpak, A.-M. Caminade, J.-P. Majoral, and M. Blanchard-Desce, Angew. Chem. Int. Ed. 45, 4645 (2006).
     https://doi.org/10.1002/anie.200601246
  20. C. Xu and W.W. Webb, J. Opt. Soc. Am. B 13, 481(1996).
     https://doi.org/10.1364/JOSAB.13.000481
  21. P. Kaatz and D.P. Shelton, J. Opt. Soc. Am. B 16, 998 (1999).
     https://doi.org/10.1364/JOSAB.16.000998
  22. W.J. Yang, M.S. Seo, X.Q. Wang, S.J. Jeon, and B.R. Cho, J. Fluoresc. 18, 403 (2008).
     https://doi.org/10.1007/s10895-007-0280-3
  23. K.D. Belfield, M.V. Bondar, O.V. Przhonska, K.J. Schafer, and W. Mourad, J. Lumin. 97, 141 (2002).
     https://doi.org/10.1016/S0022-2313(02)00216-8
  24. K.D. Belfield, M.V. Bondar, O.V. Przhonska, and K.J. Schafer, J. Fluoresc. 12, 449 (2002).
     https://doi.org/10.1023/A:1021322228428
  25. C.C. Corredor, K.D. Belfield, M.V. Bondar, O.V. Przhonska, and S. Yao, J. Photoch. Photobio. A 184, 105 (2006).
     https://doi.org/10.1016/j.jphotochem.2006.03.036
  26. X. Wang, S. Yao, H.-Y. Ahn, Y. Zhang, M.V. Bondar, J.A. Torres, and K.D. Belfield, Biomed. Opt. Express 1, 453 (2010).
     https://doi.org/10.1364/BOE.1.000453
  27. X. Wang, D.M. Nguyen, C.O. Yanez, L. Rodriguez, H.-Y. Ahn, M.V. Bondar, and K.D. Belfield, J. Am. Chem. Soc. 132, 12237 (2010).
     https://doi.org/10.1021/ja1057423
  28. C.D. Andrade, C.O. Yanez, M.A. Qaddoura, X. Wang, C.L. Arnett, S.A. Coombs, R. Bassiouni, M.V. Bondar, and K.D. Belfield, J. Fluoresc. 21, 1223 (2011).
     https://doi.org/10.1007/s10895-010-0801-3
  29. K.D. Belfield, A.R. Morales, B.S. Kang, J.M. Hales, D.J. Hagan, E.W. Van Stryland, V.M. Chapela, and J. Percino, Chem. Mater. 16, 4634 (2004).
     https://doi.org/10.1021/cm049872g
  30. K.D. Belfield, A.R. Morales, J.M. Hales, D.J. Hagan, E.W. Van Stryland, V.M. Chapela, and J. Percino, Chem. Mater. 16, 2267 (2004).
     https://doi.org/10.1021/cm035253g
  31. J.P. Moreno and M.G. Kuzyk, J. Chem. Phys. 123, 194101/1 (2005).
  32. M.G. Kuzyk, J. Chem. Phys. 125, 154108/1 (2006).
  33. O.S. Finikova, T. Troxler, A. Senes, W.F. DeGrado, R.M. Hochstrasser, and S.A. Vinogradov, J. Phys. Chem. A 111, 6977 (2007).
     https://doi.org/10.1021/jp071586f
  34. P.A. Padmawar, J.E. Rogers, G.S. He, L.Y. Chiang, L.S. Tan, T. Canteenwala, Q.D. Zheng, J.E. Slagle, D.G. McLean, P.A. Fleitz, and P.N. Prasad, Chem. Mater. 18, 4065 (2006).
     https://doi.org/10.1021/cm060718z
  35. M. Sheik-Bahae, A.A. Said, T.H. Wei, D.J. Hagan, and E.W. Van Stryland, IEEE J. Quantum Elect. 26, 760 (1990).
     https://doi.org/10.1109/3.53394
  36. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.J.A. Montgomery, J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N.J. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Ц. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, and D.J. Fox, Gaussian (Wallingford, CT, 2009).
  37. A. Picot, C. Feuvrie, C. Barsu, F. Malvolti, B. Le Guennic, H. Le Bozec, C. Andraud, L. Toupet, and O. Maury, Tetrahedron 64, 399 (2008).
     https://doi.org/10.1016/j.tet.2007.10.064
  38. J.R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer, New York, 2006).
     https://doi.org/10.1007/978-0-387-46312-4
  39. G. Luchita, M.V. Bondar, S. Yao, I.A. Mikhailov, C.O. Yanez, O.V. Przhonska, A.E. Masunov, and K.D. Belfield, Appl. Mater. Interf. 3, 3559 (2011).
     https://doi.org/10.1021/am200783c
  40. L.A. Padilha, S. Webster, O.V. Przhonska, H.H. Hu, D. Peceli, J.L. Rosch, M.V. Bondar, A.O. Gerasov, Y.P. Kovtun, M.P. Shandura, A.D. Kachkovski, D.J. Hagan, and E.W. Van Stryland, J. Mater. Chem. 19, 7503 (2009).
     https://doi.org/10.1039/b907344b
  41. J. Fu, L.A. Padilha, D.J. Hagan, E.W. Van Stryland, O.V. Przhonska, M.V. Bondar, Y.L. Slominsky, and A.D. Kachkovski, J. Opt. Soc. Am. B 24, 67 (2007).
     https://doi.org/10.1364/JOSAB.24.000067
  42. B.J. Orr and J.F. Ward, Mol. Phys. 20, 513 (1971).
     https://doi.org/10.1080/00268977100100481
  43. K. Ohta, L. Antonov, S. Yamada, and K. Kamada, J. Chem. Phys. 127, (2007).
  44. A.S. Tatikolov, Z.A. Krasnaya, L.A. Shvedova, and V.A. Kuzmin, Int. J. Photoenergy 2, 23 (2000).
     https://doi.org/10.1155/S1110662X00000040
  45. J.B. Birks and D.J. Dyson, Proc. R. Soc. Lond. A 275, 135 (1963).
     https://doi.org/10.1098/rspa.1963.0159
  46. K.D. Belfield, M.V. Bondar, J.M. Hales, A.R. Morales, O.V. Przhonska, and K.J. Schafer, J. Fluoresc. 15, 3 (2005).
     https://doi.org/10.1007/s10895-005-0207-9
  47. K.D. Belfield, M.V. Bondar, F.E. Hernandez, A.R. Morales, O.V. Przhonska, and K.J. Schafer, Appl. Optics 43, 6339 (2004).
     https://doi.org/10.1364/AO.43.006339
  48. K.D. Belfield, M.V. Bondar, F.E. Hernandezt, O.V. Przhonska, and S. Yao, J. Phys. Chem. B 111, 12723 (2007).
     https://doi.org/10.1021/jp074456f
  49. K. Kamada, K. Ohta, Y. Iwase, and K. Kondo, Chem. Phys. Lett. 372, 386 (2003).
     https://doi.org/10.1016/S0009-2614(03)00413-5
  50. O.K. Nag, C.S. Lim, B.L. Nguyen, B. Kim, J. Jang, J.H. Han, B.R. Cho, and H.Y. Woo, J. Mater. Chem. 22, 1977 (2012).
     https://doi.org/10.1039/C1JM14693A
  51. V.L. Anderson and W.W. Webb, BMC Biotechnol. 11:125, 1 (2011).