• Українська
  • English

< | >

Current issue   Ukr. J. Phys. 2014, Vol. 58, N 8, p.725-734
https://doi.org/10.15407/ujpe58.08.0725    Paper

Khelemelya O.V., Kholodov R.I., Miroshnichenko V.I.

Institute of Applied Physics, Nat. Acad. of Sci. of Ukraine
(58, Petropavlivs’ka Str., Sumy 40000, Ukraine; e-mail: xvdm@mail.ru)

Dielectric Model of Energy Losses by a Massive Charged Particle Moving Through Cold Magnetized Plasma

Section: Plasmas and gases
Original Author's Text: Ukrainian

Abstract: Energy losses by a charged particle moving in infinite magnetized plasma have been calculated in the framework of the dielectric model and with the use of the correspondence principle. This principle enabled us not to use a phenomenological cutoff parameter for matching with the theory of binary collisions. Analytical expressions for energy losses were derived for the motions of a particle directed along and perpendicularly to the magnetic field. They were confirmed by numerical calculations for a charged particle moving in a magnetic field of an arbitrary strength and at an arbitrary angle to the field direction. The results obtained are compared with those obtained in quantum field theory.

Key words: dielectric model, cutoff parameter, energy losses, principle of correspondence, binary collisions, magnetized plasma.

References:

  1. A.H. Sorensen and E. Bonderup, Nucl. Instrum. Methods 215, 27 (1983).
     https://doi.org/10.1016/0167-5087(83)91288-7
  2. E. Lee, in Proceedings of the 13th International Symposium on Heavy Ion Inertial Fusion (San Diego, CA, 2000), p. 1; E. Lee, C. Celata, J. Barnard, D. Callahan-Miller, S. Lund, A. Molvik, P. Peterson, and I. Haber Nucl. Instrum. Methods Phys. Res. A 464 (2001).
  3. H. Poth, Phys. Rep. 196, 135 (1990).
     https://doi.org/10.1016/0370-1573(90)90040-9
  4. G.I. Budker and A.N. Skrinskii, Usp. Fiz. Nauk 12, 561 (1978).
     https://doi.org/10.3367/UFNr.0124.197804a.0561
  5. V.V. Parkhomchuk and A.N. Skrinskii, Usp. Fiz. Nauk 170, 473 (2000).
     https://doi.org/10.3367/UFNr.0170.200005a.0473
  6. L.I. Menshikov, Usp. Fiz. Nauk 178, 673 (2008).
     https://doi.org/10.3367/UFNr.0178.200807a.0673
  7. H.B. Nersisyan, C. Toepffer, and G. Zwicknagel, Interaction Between Charged Particles in a Magnetic Field (Springer, Berlin 2007).
  8. H.B. Nersisyan, Phys. Rev. E 58, 3686 (1998).
     https://doi.org/10.1103/PhysRevE.58.3686
  9. V.A. Balakirev, V.I. Miroshnichenko, V.E. Storizhko, and A.P. Tolstoluzhskii, Probl. At. Sci. Technol. 53, 181 (2010).
  10. G.I. Budker, At. Energiya 22, 346 (1967).
  11. Y.S. Derbenev and A.N. Skrinsky, Part. Acc. 8, 23 (1978).
  12. I.N. Meshkov, Fiz. Elem. Chast. At. Yadra 25, 1487 (1994).
  13. Plasma Electrodynamics, edited by A.I. Akhiezer, translated by D. ter Haar (Pergamon Press, New York, 1975).
  14. I. Meshkov, A. Sidorin, A. Smirnov, G. Trubnikov, and R. Pivin, BETACOOL Physics Guide for Simulation of Long Term Beam Dynamics in Ion Storage Rings (Dubna, 2007).
  15. H. Alfv’en and C.-G. F¨althammar, Cosmical Electrodynamics: Fundamental Principles (Clarendon Press, Oxford, 1963).
  16. L. Spitzer, Physics of Fully Ionized Gases (Wiley Interscience, New York, 1962).
  17. A.G. Sitenko and K.N. Stepanov, Trudy Fiz.-Mat. Fakult. Khark. Gos. Univ 7, 5 (1958).
  18. A.I. Akhiezer and Ya.B. Fainberg, Theory and Design of Linear Accelerators (Gosatomizdat, Moscow, 1962) (in Russian).
  19. A.I. Akhiezer, Zh. Eksp. Teor. Fiz. ` 40, 320 (1961).
  20. A.B. Kitsenko, Dokl. Akad. Nauk SSSR 145, 305 (1962).
  21. A.G. Sitenko and V.N. Radzievskii, Zh. Tekhn. Fiz. 35, 1165 (1965).
  22. E.M. Lifshitz and L.P. Pitaevskii, Physical Kinetics (Pergamon Press, Oxford, UK, 1981).
  23. M. Bell, Part. Acc. 10, 101 (1980).
  24. V.L. Ginzburg, Propagation of Electromagnetic Waves in Plasma (Gordon and Breach, New York, 1961).
  25. S. Ichimaru, Basic Principles of Plasma Physics (Benjamin, Reading, Mass., 1973).