• Українська
  • English

< | >

Current issue   Ukr. J. Phys. 2014, Vol. 58, N 8, p.780-786
https://doi.org/10.15407/ujpe58.08.0780    Paper

Kuryliuk V.V.

Taras Shevchenko National University of Kyiv, Faculty of Physics
(64/13, Volodymyrs’ka Str., Kyiv 01601, Ukraine; e-mail: kuryluk@univ.kiev.ua)

Elastic Strains in SiGe Heterostructures with Non-Uniform Quantum Dots

Section: Nanosystems
Original Author's Text: Ukrainian

Abstract: Elastic strain distributions in SiGe heterostructures with quantum dots have been simulated with the use of the finite element method. The effect of a non-uniform germanium distribution in the nanoislands on the spatial dependence and the magnitude of elastic fields was studied. It is shown that quantum dots with a uniform component content are more strained in comparison with non-uniform nanoislands.

Key words: Stranski–Krastanov growth mode, Green’s functions, finite element method, wetting layer, stress tensor, elastic moduli tensor, rigid boundary conditions, node, Galerkin method.

References:

  1. K.L. Wang, D. Cha, J. Liu, and C. Chen, Proc. IEEE 95, 1866 (2007).
     https://doi.org/10.1109/JPROC.2007.900971
  2. E. Finkman, N. Shuall, A. Vardi, V. Le Thanh, and S.E. Schacham, J. Appl. Phys. 103, 093114 (2008).
     https://doi.org/10.1063/1.2919151
  3. M.L. Lee, G. Dezsi, and R. Venkatasubramanian, Thin Solid Films 518, S76 (2010).
     https://doi.org/10.1016/j.tsf.2009.10.060
  4. D.J. Lockwood and L. Tsybeskov, Phys. Status Solidi C 8, 2870 (2011).
     https://doi.org/10.1002/pssc.201084032
  5. F. Lipps, F. Pezzoli, M. Stoffel et al., Phys. Rev. B 81, 125312 (2010).
     https://doi.org/10.1103/PhysRevB.81.125312
  6. L.V. Arapkina and V.A. Yuriev, Usp. Fiz. Nauk 180, 289 (2010).
     https://doi.org/10.3367/UFNr.0180.201003e.0289
  7. M.O. Baykan, S.E. Thompson, and T. Nishida, J. Appl. Phys. 108, 093716 (2010).
     https://doi.org/10.1063/1.3488635
  8. M.I. Alonso, M. de la Calle, J.O. Osso, M. Garriga, and A.R. Goni, J. Appl. Phys. 98, 033530 (2005).
     https://doi.org/10.1063/1.2006229
  9. M.Ya. Valakh, V.O. Yukhymchuk, V.M. Dzhagan, O.S. Lytvyn, A.G. Milekhin, A.I. Nikiforov, O.P. Pchelyakov, F. Alsina, and J. Pascual, Nanotechnology 16, 1464 (2005).
     https://doi.org/10.1088/0957-4484/16/9/007
  10. V.O. Yukhymchuk, V.M. Dzhagan, A.M. Yaremko, and M.Ya. Valakh, Eur. Phys. J. B 74, 409 (2010).
     https://doi.org/10.1140/epjb/e2010-00082-9
  11. M.Ya. Valakh, P.M. Lytvyn, A.S. Nikolenko, V.V. Strelchuk, Z.F. Krasilnik, and A.N. Novikov, Appl. Phys. Lett. 96, 141909 (2010).
     https://doi.org/10.1063/1.3383241
  12. G. Schmidt and K. Eberl, Phys. Rev. B 61, 13721 (2000).
     https://doi.org/10.1103/PhysRevB.61.13721
  13. M.H. Liao, C.-H. Lee, T.A. Hung, and C.W. Liu, J. Appl. Phys. 102, 053520 (2007).
     https://doi.org/10.1063/1.2777686
  14. V. Kuryliuk, O. Korotchenkov and A. Cantarero, Phys. Rev. B 85, 075406 (2012).
     https://doi.org/10.1103/PhysRevB.85.075406
  15. E. Melezhik and O. Korotchenkov, J. Appl. Phys. 105, 023525 (2009).
     https://doi.org/10.1063/1.2777686
  16. Y. Kikuchi, H. Sugii, and K. Shintani, J. Appl. Phys. 89, 1191 (2001).
     https://doi.org/10.1063/1.1335822
  17. G.R. Liu, and S.S. Quek Jerry, Semicond. Sci. Technol. 17, 630 (2002).
     https://doi.org/10.1088/0268-1242/17/6/323
  18. N.V. Medhekar, V. Hegadekatte, and V.B. Shenoy, Phys. Rev. Lett. 100, 106104 (2008).
     https://doi.org/10.1103/PhysRevLett.100.106104
  19. O.C. Zienkiewicz and R.L. Taylor, The Finite Element Method, Vol. 1 (McGraw-Hill, London, 1989).
  20. B.A. Auld, Acoustic Fields and Waves in Solids (Wiley, New York, 1973).