• Українська
  • English

< | >

Current issue   Ukr. J. Phys. 2014, Vol. 58, N 7, p.666-672
https://doi.org/10.15407/ujpe58.07.0666    Paper

Volkov O.M.1, Kravchuk V.P.2

1 Taras Shevchenko National University of Kyiv
(64, Volodymyrs’ka Str., Kyiv 01601, Ukraine; e-mail: alexey@volkov.ca)
2 Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine
(14-b, Metrolohichna Str., Kyiv 03680, Ukraine; e-mail: vkravchuk@bitp.kiev.ua)

Saturation of Magnetic Films with Spin-Polarized Current in the Presence of a Magnetic Field

Section: Solid matter
Original Author's Text: English

Abstract: The influence of a perpendicular magnetic field on the process of transversal saturation of ferromagnetic films with spin-polarized current is studied theoretically. It is shown that the saturation current Js is decreased (increased) in the case of the codirected (oppositely directed) magnetic field and the current. There exists a critical current Jc > Js, which provides a “rigid” saturation – the saturated state is stable with respect to the transverse magnetic field of any amplitude and direction. The influence of a magnetic field on the vortex-antivortex crystals, which appear in a pre-saturated regime, is studied numerically. All analytical results are verified using micromagnetic simulations.

Key words: spin-polarized current, magnetic films, magnetic field.

References:

  1. J. Lindner, Superlattices and Microstructures 47, 497 (2010).
     https://doi.org/10.1016/j.spmi.2010.01.005
  2. S. Bohlens, B. Kr¨uger, A. Drews, M. Bolte, G. Meier, and D. Pfannkuche, Appl. Phys. Lett. 93, 142508 (pages 3) (2008).
  3. A. Drews, B. Kruger, G. Meier, S. Bohlens, L. Bocklage, T. Matsuyama, and M. Bolte, Applied Physics Letters 94, 062504 (pages 3) (2009).
  4. A.D. Kent, B. Ozyilmaz, and E. del Barco, Appl. Phys. Lett. 84, 3897 (2004).
     https://doi.org/10.1063/1.1739271
  5. J. C. Slonczewski, J. Magn. Magn. Mater. 159, L1 (1996).
     https://doi.org/10.1016/0304-8853(96)00062-5
  6. L. Berger, Phys. Rev. B 54, 9353 (1996).
     https://doi.org/10.1103/PhysRevB.54.9353
  7. J.C. Slonczewski, J. Magn. Magn. Mater. 247, 324 (2002).
     https://doi.org/10.1016/S0304-8853(02)00291-3
  8. O.M. Volkov, V.P. Kravchuk, D.D. Sheka, and Y. Gaididei, Phys. Rev. B 84, 052404 (2011).
     https://doi.org/10.1103/PhysRevB.84.052404
  9. Y. Gaididei, O.M. Volkov, V.P. Kravchuk, and D. D. Sheka, Phys. Rev. B 86, 144401 (2012).
     https://doi.org/10.1103/PhysRevB.86.144401
  10. A. Dussaux, B. Georges, J. Grollier, V. Cros, A. Khvalkovskiy, A. Fukushima, M. Konoto, H. Kubota, K. Yakushiji, S. Yuasa, et al., Nat Commun 1, 1 (2010).
     https://doi.org/10.1038/ncomms1006
  11. A. Dussaux, A. V. Khvalkovskiy, P. Bortolotti, J. Grollier, V. Cros, and A. Fert, Phys. Rev. B 86, 014402 (2012).
     https://doi.org/10.1103/PhysRevB.86.014402
  12. V. Sluka, A. K’akay, A.M. Deac, D.E. B¨urgler, R. Hertel, and C.M. Schneider, Journal of Physics D: Applied Physics 44, 384002 (2011).
     https://doi.org/10.1088/0022-3727/44/38/384002
  13. A.I. Akhiezer, V.G. Bar'yakhtar, and S.V. Peletminski˘ı, Spin Waves (North-Holland, Amsterdam, 1968).
  14. The Object Oriented MicroMagnetic Framework, developed by M. J. Donahue and D. Porter mainly, from NIST. We used the 3D version of the 1.2α4 release, URL - http://math.nist.gov/oommf/