• Українська
  • English

< | >

Current issue   Ukr. J. Phys. 2014, Vol. 58, N 7, p.636-645
https://doi.org/10.15407/ujpe58.07.0636    Paper

Gavrilko T.A.1, Puchkovska G.O.1, Styopkin V.I.1, Bezrodna T.V.1, Baran J.2, Drozd M.2

1 Institute of Physics, Nat. Acad. of Sci. of Ukraine
(46, Prosp. Nauky, Kyiv 03028, Ukraine; e-mail: gavrilko@iop.kiev.ua)
2 Institute of Low Temperatures and Structure Research, PAN
(2, Okolna Str., Wroclaw, Poland)

Molecular Dynamics and Phase Transitions Behavior of Binary Mixtures of Fatty Acids and Cetyltrimethylammonium Bromide as Studied Via Davydov Splitting of Molecular Vibrational Modes

Section: Soft matter
Original Author's Text: English

Abstract: The 1:1 solid phase complexes of stearic (SA) and behenic (BA) fatty acids (FA) with cationic surfactant cetyltrimethylammonium bromide (CTAB) are prepared from an equimolar ethanol solution of their binary mixtures. A supramolecular complexation between FA and CTAB molecules is proven with FTIR spectroscopy, X-ray diffraction (XRD), and differential scanning calorimetry (DSC). A single-phase layered crystalline structure of both CTAB:SA and CTAB:BA complexes is revealed by XRD. The greatly enhanced thermal stability of the CTAB:FA complexes over the pure FA (by about 40–50C) is found with DSC along with a number of successive solid-solid phase transitions. The temperature-dependent FTIR study of the Davydov splitting for CH2 rocking (720–730 cm−1 ) vibrations revealed a significant difference in the conformational disorder of methylene chains and the molecular packing in successive solid phases of CTAB:SA and CTAB:BA complexes. Our research provides a molecular basis for a prospective application of such class of binary mixtures of oppositely charged cationic and anionic surfactants in thermo-sensitive supramolecular systems.

Key words: FTIR spectroscopy, X-ray diffraction, DSC, CTAB, fatty acids, supramolecular complex.

References:

  1. D. Kopetzki, Y. Michina, T. Gustavsson, and D. Carriere, Soft Matter 5, 4212 (2009).
     https://doi.org/10.1039/b907339f
  2. Th. Zemb, D. Carriere, K. Glinel, M. Hartman, A. Meister, Cl. Vautrin, N. Delorme, A. Fery, and M. Dubois, Colloid Surface A 303, 37 (2007).
     https://doi.org/10.1016/j.colsurfa.2007.03.028
  3. A. Stocco, D. Carriere, M. Cottat, and D. Langevin, Langmuir 26, 10663 (2010).
     https://doi.org/10.1021/la100954v
  4. M. Dubois, D. Carriere, R. Iyer, M. Arunagirinathan, J. Bellare, J. Verbavatz, and T. Zemb, Colloid Surface A 319, 90 (2008).
  5. E. Maurer, L. Belloni, T. Zemb, and D. Carriere, Langmuir 23, 6554 (2007).
     https://doi.org/10.1021/la070184w
  6. G. Andreatta, J.-J. Benattara, R. Petkova, J.Y.J. Wang, P. Tong, A. Polidori, and B. Pucci, Colloid Surface A 321, 211 (2008).
  7. Y. Lu, R. Gangull, C. Drewlen, M. Anderson, C. Brinker, W. Gong, Y. Guo, H. Soyez, B. Dunn, M. Huang, and J. Zink, Nature 389, 364 (1997).
     https://doi.org/10.1038/38699
  8. S. Biswas, S.A. Hussain, S. Deb, R.K. Nath, and D. Bhattacharjee, Spectrochim. Acta A 65, 628 (2006).
     https://doi.org/10.1016/j.saa.2005.12.021
  9. V. Tomasi’c, S. Popovi’c, and N. Filipovic-Vincekovi’c, J. Colloid Interf. Sci. 215, 280 (1999).
     https://doi.org/10.1006/jcis.1999.6234
  10. M.L. Lynch, F. Wireko, M. Tarek, and M. Klein, J. Phys. Chem. B 105, 552 (2001).
     https://doi.org/10.1021/jp002602a
  11. N. Filipovic-Vincekovi’c, I. Puci’c, S. Popovi’c, V. Tomasi’c, and D. Tezak, J. Colloid Interf. Sci. 188, 396 (1997).
     https://doi.org/10.1006/jcis.1997.4767
  12. J.B. Peng, G.T. Barnes, and I.R. Gentle, Adv. Colloid Interf. Sci. 91, 163 (2001).
     https://doi.org/10.1016/S0001-8686(99)00031-7
  13. B.F.B. Silva, E.F. Marques, U. Olsson, and R. Pons, Langmuir 26, 3058 (2010).
     https://doi.org/10.1021/la902963k
  14. B. Tah, P. Pal, M. Mahato, and G.B. Talapatra, J. Phys. Chem. B 115, 8493 (2011).
     https://doi.org/10.1021/jp202578s
  15. T. Bezrodna, G. Puchkovska, V. Styopkin, and J. Baran, Thin Solid Films 517, 1759 (2009).
     https://doi.org/10.1016/j.tsf.2008.10.008
  16. T. Bezrodna, G. Puchkovska, V. Styopkin, J. Baran, M. Drozd, V. Danchuk, and A. Kravchuk, J. Molec. Struct. 973, 47 (2010).
     https://doi.org/10.1016/j.molstruc.2010.03.018
  17. S.P. Makarenko, G.A. Puchkovska, E.N. Kotelnikova, and S.K. Filatov, J. Molec. Struct. 704, 25 (2004).
     https://doi.org/10.1016/j.molstruc.2004.01.046
  18. G.O. Puchkovska, S.P. Makarenko, V.D. Danchuk, and A.P. Kravchuk, J. Molec. Struct. 744–747, 53 (2005).
     https://doi.org/10.1016/j.molstruc.2005.01.002
  19. L.J. Bellami, The Infra-Red Spectra of Complex Molecules (Wiley, New York, 1958).
  20. W. Wu, Y. Wang, and H.-S. Wang, Vib. Spectrosc. 46, 158 (2008).
     https://doi.org/10.1016/j.vibspec.2007.12.012
  21. A. Imanishi, R. Omoda, and Y. Nakato, Langmuir 22, 1706 (2006).
     https://doi.org/10.1021/la052495h
  22. G.O. Puchkovska, V.D. Danchuk, A.P. Kravchuk, and J.I. Kukielski, J. Molec. Struct. 704, 119 (2004).
     https://doi.org/10.1016/j.molstruc.2003.12.063
  23. D. Hadˇzi, J. Grdadolnik, and A. Meden, J. Molec. Struct. 381, 9 (1996).
  24. A.S. Davydov, Theory of Molecular Excitons (Plenum Press, New York, 1971).
     https://doi.org/10.1007/978-1-4899-5169-4
  25. E.B. Sirota, H.E. King, jr., D.M. Singer, and H.S. Shao, J. Chem. Phys. 98, 5809 (1993).
     https://doi.org/10.1063/1.464874