• Українська
  • English

< | >

Current issue   Ukr. J. Phys. 2014, Vol. 58, N 7, p.628-635
https://doi.org/10.15407/ujpe58.07.0628    Paper

Nesterov A.V., Vasilevsky V.S., Kovalenko T.P.

Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine
(14b, Metrolohichna Str., Kyiv 03680, Ukraine; e-mail: nesterov@bitp.kiev.ua)

Spectra of Nuclei 9Вe and 9В in a Three-Cluster Microscopic Model

Section: Nuclei and nuclear reactions
Original Author's Text: English

Abstract: Within a microscopic three-cluster α + α+ n(p) model, which is a three-cluster version of the algebraic approach to the resonating group method (AV RGM), we consider the spectra of the low-lying states of mirror nuclei 9Be and 9B in the excitation energy range from zero to 5 MeV. The obtained theoretical results are compared with the available experimental data.

Key words: spectra of nuclei, three-cluster microscopic model, resonating group method, energy range.

References:

  1. S.Е. Woosley and R.D. Hoffman, Astrophys. J. 395, 202 (1992).
     https://doi.org/10.1086/171644
  2. B.S. Meyer, G.J. Mathews, W.M. Howard et al., Astrophys. J. 399 656 (1992).
     https://doi.org/10.1086/171957
  3. D.R. Tilley, J.H. Kelley, J.L. Godwin et al., Nucl. Phys. A 745, 155 (2004).
     https://doi.org/10.1016/j.nuclphysa.2004.09.059
  4. M.A. Tiede, N.R. Robson, D. Caussyn et al., Phys. Rev. C 52, 1315 (1995).
     https://doi.org/10.1103/PhysRevC.52.1315
  5. K. Shoda and T. Tanaka, Phys. Rev. C 59, 239 (1999).
     https://doi.org/10.1103/PhysRevC.59.239
  6. H. Akimune, M. Fujimura, M. Fujiwara et al., Phys. Rev. C 64, 041305(R) (2001).
  7. H. Utsunomiya, Y. Yonezawa, H. Akimune et al., Phys. Rev. C 63, 018801 (2001).
     https://doi.org/10.1103/PhysRevC.63.018801
  8. B.R. Fulton, R.L. Cowin, R.J. Woolliscroft et al., Phys. Rev. C 70, 047602 (2004).
     https://doi.org/10.1103/PhysRevC.70.047602
  9. Y. Prezado, M.J.G. Borge, Aa. Diget et al., Phys. Lett. B 618, 43 (2005).
     https://doi.org/10.1016/j.physletb.2005.05.030
  10. P. Papka, T.A.D. Brown, B.R. Fulton et al., Phys. Rev. C 75, 045803 (2007).
     https://doi.org/10.1103/PhysRevC.75.045803
  11. O. Burda, P. Von Neumann-Cosel, A. Richter et al., Phys. Rev. C 82, 015808 (2010).
     https://doi.org/10.1103/PhysRevC.82.015808
  12. P. Descouvemont, Phys. Rev. C 39, 1557 (1989).
     https://doi.org/10.1103/PhysRevC.39.1557
  13. V.T. Voronchev, V.I. Kukulin, V.N. Pomerantsev, and G.G. Ryzhikh, Few-Body Syst. 18, 191 (1995).
     https://doi.org/10.1007/s006010050011
  14. F.C. Barker, Phys. Rev. C 53, 2539 (1996).
     https://doi.org/10.1103/PhysRevC.53.2539
  15. K. Arai, Y. Ogawa, Y. Suzuki, and K. Varga, Phys. Rev. C 54, 132 (1996).
     https://doi.org/10.1103/PhysRevC.54.132
  16. V.D. Efros and J.M. Bang, Eur. Phys. J. A 4, 33 (1999).
     https://doi.org/10.1007/s100500050201
  17. K. Arai, P. Descouvemont, D. Baye, and W.N. Catford, Phys. Rev. C 68, 014310 (2003).
     https://doi.org/10.1103/PhysRevC.68.014310
  18. K. Arai, Nucl. Phys. A 738, 342 (2004).
     https://doi.org/10.1016/j.nuclphysa.2004.04.058
  19. L.V. Grigorenko and M.V. Zhukov, Phys. Rev. C 72, 015803 (2005).
     https://doi.org/10.1103/PhysRevC.72.015803
  20. M. Theeten, D. Baye, and P. Descouvemont, Phys. Rev. C 74, 044304 (2006).
     https://doi.org/10.1103/PhysRevC.74.044304
  21. I. Filikhin, V.M. Suslov, and B. Vlahovic, Few-Body Syst. 50, 255 (2010).
     https://doi.org/10.1007/s00601-010-0135-3
  22. V.S. Vasilevsky, A.V. Nesterov, F. Arickx, and J. Broeckhove, Phys. Rev. C 61, 034606 (2001).
     https://doi.org/10.1103/PhysRevC.63.034606
  23. A.V. Nesterov, F. Arickx, J. Broeckhove, and V.S. Vasilevsky, Phys. Part. Nucl. 41, 716 (2010).
     https://doi.org/10.1134/S1063779610050047
  24. G.F. Filippov, I.P. Okhrimenko, Yad. Fiz. 32, 932 (1980).
  25. V.S. Vasilevsky and F. Arickx, Phys. Rev. A 55, 265 (1997).
     https://doi.org/10.1103/PhysRevA.55.265
  26. D.R. Thompson, M. Lemere, and Y.C. Tang, Nucl. Phys. A 286, 53 (1977).
     https://doi.org/10.1016/0375-9474(77)90007-0
  27. I. Reichstein and Y.C. Tang, Nucl. Phys. A 158, 529 (1970).
     https://doi.org/10.1016/0375-9474(70)90201-0
  28. W. N¨ortersh¨auser, D. Tiedemann, M. Z’akov’a ˇ et al., Phys. Rev. Lett. 102, 062503 (2009).
     https://doi.org/10.1103/PhysRevLett.102.062503
  29. V.S. Vasilevsky, A.V. Nesterov, F. Arickx, and J. Broeckhove, Phys. Rev. C 63, 034607 (2001).
     https://doi.org/10.1103/PhysRevC.63.034607
  30. S. Aoyama, S. Mukai, K. Kato et al., Prog. Theor. Phys. 93, 99 (1995).
     https://doi.org/10.1143/ptp/93.1.99
  31. S. Aoyama, S. Mukai, K. Kato et al., Prog. Theor. Phys. 94, 343 (1995).
     https://doi.org/10.1143/PTP.94.343
  32. M. Burlein, H.T. Fortune, P.H. Kutt et al., Phys. Rev. C 38, 2078 (1988).
     https://doi.org/10.1103/PhysRevC.38.2078
  33. N. Arena, Seb. Cavallaro, G. Fazio et al., EPL 5, 517 (1988).
     https://doi.org/10.1209/0295-5075/5/6/007
  34. M.A. Tiede, K.W. Kemper, N.R. Fletcher et al., Phys. Rev. C 52, 1315 (1995).
     https://doi.org/10.1103/PhysRevC.52.1315
  35. L. Buchmann, E. Gete, J.C. Chow et al., Phys. Rev. C 63, 034303 (2001).
     https://doi.org/10.1103/PhysRevC.63.034303
  36. R. Sherr and H.T. Fortune, Phys. Rev. C 70, 054312 (2004).
     https://doi.org/10.1103/PhysRevC.70.054312
  37. N. Tanaka, Y. Suzuki, K. Varga, and R.G. Lovas, Phys. Rev. C 59, 1391 (1999).
     https://doi.org/10.1103/PhysRevC.59.1391
  38. V.S. Vasilevsky, F. Arickx, J. Broeckhove, P. Helinckx, and A.V. Nesterov, J. Phys. G 34, 1955 (2007).
     https://doi.org/10.1088/0954-3899/34/9/008