• Українська
  • English

<Previous issue | >

Current issue   Ukr. J. Phys. 2014, Vol. 58, N 7, p.611-617
https://doi.org/10.15407/ujpe58.07.0611    Paper

Tarasov A.N.

Akhiezer Institute for Theoretical Physics, National Science Center
“Kharkiv Institute of Physics and Technology”, Nat. Acad. of Sci. of Ukraine
(1, Akademichna Str., Kharkiv 61108, Ukraine; e-mail: antarasov@kipt.kharkov.ua)

Magnetic Susceptibilities of Dense Superfluid Neutron Matter with Generalized Skyrme Forces and Spin-Triplet Pairing at Zero Temperature

Section: Fields and elementary particles
Original Author's Text: English

Abstract: Magnetic properties of a dense superfluid neutron matter (relevant to the physics of neutron star cores) at subnuclear and supranuclear densities (in the range 0.5 n/n0 3.0, where n0 = 0.17 (fm−3) is the saturation nuclear density) with the so-called generalized Skyrme effective forces BSk18, BSk19, BSk20, BSk21 (containing additional unconventional densitydependent terms) and with spin-triplet p-wave pairing (with spin S = 1 and orbital moment L = 1) in the presence of a strong magnetic field are studied within the framework of the nonrelativistic generalized Fermi-liquid theory at zero temperature. The upper limit for the density range of a neutron matter is restricted by the magnitude 3n0 in order to avoid the account of relativistic corrections growing with density. The general formula obtained in [1] (valid for any parametrization of the Skyrme forces) for the magnetic susceptibility of a superfluid neutron matter at zero temperature is specified here for the new BSk18-BSk21 parametrizations of the Skyrme interaction. As is known, all previous conventional Skyrme interactions predict spin instabilities in a normal (nonsuperfluid) neutron matter beyond the saturation nuclear density. It is obtained in the present work that, for the model of superfluid neutron matter with new generalized BSk18-BSk21 parametrizations, such phase transition to the ferromagnetic state occurs neither at subnuclear nor at supranuclear densities. Thus, the high-density ferromagnetic instability is removed in the neutron matter with new generalized Skyrme forces BSk18-BSk21 not only in normal, but also in superfluid states with anisotropic spin-triplet pairing.

Key words: dense superfluid neutron matter, Skyrme forces, spin-triplet pairing.

References:

  1. A.N. Tarasov, Ukr. J. Phys. 55, 644 (2010).
  2. A.N. Tarasov, Centr. Eur. J. Phys. 9, 1057 (2011).
  3. E. Chabanat, P. Bonche, P. Haensel, J. Meyer, and R. Schaeffer, Nucl. Phys. A 627, 710 (1997).
     https://doi.org/10.1016/S0375-9474(97)00596-4
  4. J. Friedrich and P.-G. Reinhard, Phys. Rev. C 33, 335 (1986).
     https://doi.org/10.1103/PhysRevC.33.335
  5. M. Rayet, M. Arnould, F. Tondeur, and G. Paulus, Astron. Astrophys. 116, 183 (1982).
  6. J.R. Stone, J.C. Miller, R. Koncewicz, P.D. Stevenson, and M.R. Strayer, Phys. Rev. C 68, 034324 (2003).
     https://doi.org/10.1103/PhysRevC.68.034324
  7. M. Dutra, O. Lourenco, J.S. Sa Martins, A. Delfino, J.R. Stone, and P.D. Stevenson, Phys. Rev. C 85, 035201 (2012).
     https://doi.org/10.1103/PhysRevC.85.035201
  8. T. Takatsuka and R. Tamagaki, Prog. Theor. Phys. Suppl. 112, 27 (1993).
     https://doi.org/10.1143/PTPS.112.27
  9. A.J. Leggett, Rev. Mod. Phys. 47, 331 (1975).
     https://doi.org/10.1103/RevModPhys.47.331
  10. D. Vollhardt and P. Wolfle, The Superfluid Phases of Helium 3 (Taylor and Francis, London, 1990).
  11. AIP Conf. Proc. 983 (2008), 40 Years of Pulsars: Millisecond Pulsars, Magnetars and More, edited by C. Bassa, Z. Wang, A, Cumming, V.M. Kaspi (McGill Univ., Montreal, 2008).
  12. R.C. Duncan and Ch. Thompson, Astrophys. J. 392, L9 (1992).
     https://doi.org/10.1086/186413
  13. Ch. Thompson and R.C. Duncan, Astrophys. J. 408, 194 (1993).
     https://doi.org/10.1086/172580
  14. C. Kouveliotou et al., Nature 393, 235 (1998).
     https://doi.org/10.1038/30410
  15. S.L. Shapiro and S.A. Teukolsky, Black Holes, White Dwarfs, and Neutron Stars: The Physics of Compact Objects (Wiley, New York, 1983).
     https://doi.org/10.1002/9783527617661
  16. P. Haensel, A.Y. Potekhin, and D.G. Yakovlev, Neutron Stars 1, Equation of State and Structure (Springer, New York, 2007).
  17. D.G. Yakovlev, K.P. Levenfish, and Yu.A. Shibanov, Uspekhi Fiz. Nauk, 169, 825 (1999).
     https://doi.org/10.3367/UFNr.0169.199908a.0825
  18. U. Lombardo and H.-J. Schulze, in Physics of Neutron Stars Interiors, edited by D. Blaschke et al. (Springer, New York, 2001), p. 30.
     https://doi.org/10.1007/3-540-44578-1_2
  19. A.N. Tarasov, J. Phys.: Conf. Ser. 400, 032101 (2012).
     https://doi.org/10.1088/1742-6596/400/3/032101
  20. N. Chamel, S. Goriely, and J.M. Pearson, Phys. Rev. C 80, 065804 (2009).
     https://doi.org/10.1103/PhysRevC.80.065804
  21. N. Chamel, S. Goriely, and J.M. Pearson, Phys. Rev. C 82, 035804 (2010).
     https://doi.org/10.1103/PhysRevC.82.035804
  22. A.I. Akhiezer, V.V. Krasil'nikov, S.V. Peletminskii, and A.A. Yatsenko, Phys. Rep. 245, 1 (1994).
     https://doi.org/10.1016/0370-1573(94)90060-4
  23. A. Vidaurre, J. Navarro, and J. Bernabeu, Astron. Astrophys. 135, 361 (1984).
  24. M. Kutschera and W. Wojcik, Phys. Lett. B 325, 271 (1994).
     https://doi.org/10.1016/0370-2693(94)90009-4
  25. J. Margueron, J. Navarro, and N.V. Giai, Phys. Rev. C 66, 014303 (2002).
     https://doi.org/10.1103/PhysRevC.66.014303
  26. S. Fantoni, A. Sarsa, and K.E. Schmidt, Phys. Rev. Lett. 87, 181101 (2001).
     https://doi.org/10.1103/PhysRevLett.87.181101
  27. I. Vidana, A. Polls, and A. Ramos, Phys. Rev. C 65, 035804 (2002).
     https://doi.org/10.1103/PhysRevC.65.035804
  28. I. Vidana and I. Bombaci, Phys. Rev. C 66, 045801 (2002).
     https://doi.org/10.1103/PhysRevC.66.045801
  29. A. Rios, A. Polls, and I. Vidana, Phys. Rev. C 71, 055802 (2005).
     https://doi.org/10.1103/PhysRevC.71.055802
  30. I. Bombaci, A. Polls, A. Ramos, A. Rios, and I. Vidana, Phys. Lett. B 632, 638 (2006).
     https://doi.org/10.1016/j.physletb.2005.08.136
  31. M.A. Perez-Garcia, Phys. Rev. C 77, 065806 (2008).
     https://doi.org/10.1103/PhysRevC.77.065806
  32. M.A. Perez-Garcia, J. Navarro, and A. Polls, Phys. Rev. C 80, 025802 (2009).
     https://doi.org/10.1103/PhysRevC.80.025802
  33. A.A. Isayev and J. Yang, Phys. Rev. C 80, 065801 (2009).
     https://doi.org/10.1103/PhysRevC.80.065801
  34. S. Goriely, N. Chamel, and J.M. Pearson, Phys. Rev. Lett. 102, 152503 (2009).
     https://doi.org/10.1103/PhysRevLett.102.152503
  35. A.N. Tarasov, Low Temp. Phys. 24, 324 (1998); 26, 785 (2000).
  36. A.N. Tarasov, J. Probl. Atom. Sci. Techn. No. 6(2), 356 (2001).
  37. V.P. Mineev, Uspekhi Fiz. Nauk 139, 303 (1983).
     https://doi.org/10.3367/UFNr.0139.198302d.0303
  38. T. Tatsumi and K. Sato, Phys. Lett. B 663, 322 (2008).
     https://doi.org/10.1016/j.physletb.2008.04.031
  39. G.E. Brown, C.-H. Lee, and M. Rho, Phys. Rep. 462, 1 (2008).
     https://doi.org/10.1016/j.physrep.2008.03.002
  40. M.G. Alford, A. Schmitt, K. Rajagopal, and T. Sch¨afer, Rev. Mod. Phys. 80, 1455 (2008).
     https://doi.org/10.1103/RevModPhys.80.1455
  41. K. Sato and T. Tatsumi, Nucl. Phys. A 826, 74 (2009). V.P. Neznamov and A.J. Silenko, J. Math. Phys. 50, 122302 (2009).