• Українська
  • English

< | >

Current issue   Ukr. J. Phys. 2014, Vol. 58, N 6, p.554-561
https://doi.org/10.15407/ujpe58.06.0554    Paper

Perepelytsya S.M., Volkov S.N.

Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine
(14b, Metrolohichna Str., Kyiv 03680, Ukraine; e-mail: perepelytsya@bitp.kiev.ua; snvolkov@bitp.kiev.ua)

Dynamics of Ion-Phosphate Lattice of DNA in Left-Handed Double Helix Form

Section: Soft matter
Original Author's Text: English

Abstract: The conformational vibrations of Z-DNA with counterions are studied in the framework of a phenomenological model developed. The structure of a left-handed double helix with counterions neutralizing the negatively charged phosphate groups of DNA is considered as an ion-phosphate lattice. The frequencies and the Raman intensities for the modes of Z-DNA with Na+ and Mg2+ ions are calculated, and the low-frequency Raman spectra are built. At the spectral interval about the frequency 150 cm−1, a new mode of ion-phosphate vibrations, which characterizes the vibrations of Mg2+ counterions, is found. The results of our calculations show that the intensities of Z-DNA modes are sensitive to the concentration of magnesium counterions. The obtained results describe well the experimental Raman spectra of Z-DNA.

Key words: left-handed double helix, ion-phosphate lattice, DNA.

References:

  1. W. Saenger, Principles of Nucleic Acid Structure (Springer, New York, 1984). https://doi.org/10.1007/978-1-4612-5190-3
  2. Yu.P. Blagoi, V.L. Galkin, G.O. Gladchenko et al., The Complexes of Nucleic Acids and Metals in Solutions (Naukova Dumka, Kiev, 1991) (in Russian).
  3. V.I. Ivanov, L.E. Minchenkova, A.K. Schyolkina, and A.I. Poletayev, Biopolymers 12, 89 (1973). https://doi.org/10.1002/bip.1973.360120109
  4. V.Ya. Maleev, M.A. Semenov, A.I. Gasan, and V.A. Kashpur, Biofizika 38, 768 (1993).
  5. L.D. Williams and L.J. Maher, Annu. Rev. Biophys. Biomol. Struct. 29, 497 (2000). https://doi.org/10.1146/annurev.biophys.29.1.497
  6. A. Rich and S. Zhang, Nature Reviews 4, 566 (2003). https://doi.org/10.1038/nrg1115
  7. V. Tereshko et al., Nucleic Acids Res. 29, 1208 (2001). https://doi.org/10.1093/nar/29.5.1208
  8. V. Tereshko, G. Minasov, and M. Egli, J. Am. Chem. Soc. 121, 470 (1999). https://doi.org/10.1021/ja9832919
  9. N.V. Hud and M. Polak, Current Opinion Struct. Biol. 11, 293 (2001). https://doi.org/10.1016/S0959-440X(00)00205-0
  10. G.S. Manning, Q. Rev. Biophys. 11, 179 (1978). https://doi.org/10.1017/S0033583500002031
  11. M.D. Frank-Kamenetskii, V.V. Anshelevich, and A.V. Lukashin, Sov. Phys. Usp. 151, 595 (1987). https://doi.org/10.3367/UFNr.0151.198704b.0595
  12. Y. Levin, Rep. Prog. Phys. 65, 1577 (2002). https://doi.org/10.1088/0034-4885/65/11/201
  13. A.A. Kornyshev et al., Rev. Mod. Phys. 79, 943 (2007). https://doi.org/10.1103/RevModPhys.79.943
  14. R. Das, T.T. Mills, L.W. Kwok et al., Phys. Rev. Lett. 90, 188103 (2003). https://doi.org/10.1103/PhysRevLett.90.188103
  15. K. Andersen, R. Das, H.Y. Park et al., Phys. Rev. Lett. 93, 248103 (2004). https://doi.org/10.1103/PhysRevLett.93.248103
  16. K. Andresen, X. Qui, S.A. Pabit et al., Biophys. J. 95, 287 (2008). https://doi.org/10.1529/biophysj.107.123174
  17. X. Qiu, L.W. Kwok, H.Y. Park et al., Phys. Rev. Lett. 101, 228101 (2008). https://doi.org/10.1103/PhysRevLett.101.228101
  18. P. Varnai and K. Zakrzewska, Nucleic Acids Res. 32, 4269 (2004). https://doi.org/10.1093/nar/gkh765
  19. S.Y. Ponomarev, K.M. Thayer, and D.L. Beveridge, Proc. Natl. Acad. Sci. USA 101, 14771 (2004). https://doi.org/10.1073/pnas.0406435101
  20. C. Kittel, Introduction to Solid State Physics (Wiley, New York, 1954).
  21. I.A. Heisler, K. Mazur, and S.R. Meech, J. Phys. Chem. 115, 2563 (2011). https://doi.org/10.1021/jp111239v
  22. J.W. Powell, G.S. Edwards, L. Genzel et al., Phys. Rev. A 35, 3929 (1987). https://doi.org/10.1103/PhysRevA.35.3929
  23. O.P. Lamba, A.H.-J. Wang, and G.J. Thomas, jr., Biopolymers 28, 667 (1989). https://doi.org/10.1002/bip.360280210
  24. T. Weidlich, S.M. Lindsay, Qi Rui et al., J. Biomol. Struct. Dyn. 8, 139 (1990). https://doi.org/10.1080/07391102.1990.10507795
  25. T. Weidlich, J.W. Powell, L. Genzel, and A. Rupprecht, Biopolymers 30, 477 (1990). https://doi.org/10.1002/bip.360300324
  26. S.N. Volkov and A.M. Kosevich, Molek. Biol. 21, 797 (1987).
  27. S.N. Volkov and A.M. Kosevich, J. Biomol. Struct. Dyn. 8, 1069 (1991). https://doi.org/10.1080/07391102.1991.10507866
  28. S.N. Volkov, Biopolymers and Cell 7, 40 (1991). https://doi.org/10.7124/bc.0002B0
  29. A.M. Kosevich and S.N. Volkov, Nonlinear Excitations in Biomolecules, edited by M. Peyrard (Springer, New York, 1995), Chapter 9.
  30. S.M. Perepelytsya and S.N. Volkov, Ukr. J. Phys. 49, 1072 (2004); arXiv: q-bio.BM/0412022.
  31. S.M. Perepelytsya and S.N. Volkov, Eur. Phys. J. E 24, 261 (2007). https://doi.org/10.1140/epje/i2007-10236-x
  32. S.M. Perepelytsya and S.N. Volkov, Biofiz. Bull. 23(2), 5 (2009); arXiv: q-bio.BM/0805.0696v1.
  33. S.M. Perepelytsya and S.N. Volkov, Eur. Phys. J. E 31, 201 (2010). CrossRef
  34. S.M. Perepelytsya and S.N. Volkov, Ukr. J. Phys. 55, 1182 (2010).
  35. S.M. Perepelytsya and S.N. Volkov, J. Molec. Liq. 5, 1182 (2011).
  36. T. Weidlich, S.M. Lindsay, W.L. Peticolas, and G.A. Thomas, J. Biomolec. Struct. Dyn. 7, 849 (1990). https://doi.org/10.1002/3527603085
  37. A.M. Kosevich,Theory of Crystal Lattice (Wiley-VCH, Berlin, 1999). https://doi.org/10.1080/07391102.1990.10508528
  38. R.V. Gessner, C.A. Frederick, G.J. Quigley et al., J. Biol. Chem. 264, 7921 (1989).
  39. N.A. Izmailov, Electrochemistry of Solutions (Khimiya, Moscow, 1976) (in Russian).