• Українська
  • English

< | >

Current issue   Ukr. J. Phys. 2014, Vol. 58, N 6, p.544-553
https://doi.org/10.15407/ujpe58.06.0544    Paper

Vasilevsky V.S.

Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine
(14b, Metrolohichna Str., Kyiv 03143, Ukraine; e-mail: VSVasilevsky@gmail.com)

Microscopic Three-Cluster Descriptions of 11B and 11C Nuclei

Section: Nuclei and nuclear reactions
Original Author's Text: English

Abstract: We investigate bound and resonance states of 11B and 11C. For this aim, we make use a threecluster microscopic model which is a combination of the resonating group method and the hyperspherical harmonics Method. The model employs the basis of hyperspherical harmonics to enumerate channels and to describe the three-cluster continuum. The parameters of bound states and the nature of resonance states imbedded in the three-cluster continuum are investigated in detail.

Key words: nuclei, three-cluster microscopic models, resonating group method, hyperspherical harmonics method.

References:

  1. F. Ajzenberg-Selove, Nucl. Phys. A 506, 1 (1990). https://doi.org/10.1016/0375-9474(90)90271-M
  2. N. Soi’c, M. Freer, L. Donadille et al., Nucl. Phys. A 742, 271 (2004). https://doi.org/10.1016/j.nuclphysa.2004.06.027
  3. N.C. Summers, S.D. Pain, N.A. Orr et al., Phys. Lett. B 650, 124 (2007). https://doi.org/10.1016/j.physletb.2007.05.003
  4. T. Kawabata, H. Akimune, H. Fujita et al., Nucl. Phys. A 790, 290 (2007). https://doi.org/10.1016/j.nuclphysa.2007.03.047
  5. T. Kawabata, H. Akimune, H. Fujita et al., Nucl. Phys. A 788, 301 (2007). https://doi.org/10.1016/j.nuclphysa.2007.01.016
  6. T. Kawabata, H. Akimune, H. Fujimura et al., Phys. Rev. C 70, 034318 (2004). https://doi.org/10.1103/PhysRevC.70.034318
  7. H. Yamaguchi, T. Hashimoto, S. Hayakawa et al., Phys. Rev. C 83, 034306 (2011). https://doi.org/10.1103/PhysRevC.83.034306
  8. M. Yosoi, H. Akimune, I. Daito et al., Phys. Lett. B 551, 255 (2003). https://doi.org/10.1016/S0370-2693(02)03062-9
  9. H.T. Fortune and R. Sherr, Phys. Rev. C 83, 054314 (2011). https://doi.org/10.1103/PhysRevC.83.054314
  10. M. Freer, N.L. Achouri, C. Angulo et al., Phys. Rev. C 85, 014304 (2012). https://doi.org/10.1103/PhysRevC.85.014304
  11. R.J. Charity, S.A. Komarov, L.G. Sobotka et al., Phys. Rev. C 78, 054307 (2008). https://doi.org/10.1103/PhysRevC.78.054307
  12. N. Curtis, N.I. Ashwood, W.N. Catford et al., Phys. Rev. C 72, 044320 (2005). https://doi.org/10.1103/PhysRevC.72.044320
  13. P. Descouvemont, Nucl. Phys. A 584, 532 (1995). https://doi.org/10.1016/0375-9474(94)00784-K
  14. N.K. Timofeyuk, P. Descouvemont, R.C. Johnson, Phys. Rev. C 75, 034302 (2007). https://doi.org/10.1103/PhysRevC.75.034302
  15. T. Yamada and Y. Funaki, J. Phys. Conf. Ser. 321, 012025 (2011). https://doi.org/10.1088/1742-6596/321/1/012025
  16. T. Yamada and Y. Funaki, Phys. Rev. C 82, 064315 (2010). https://doi.org/10.1103/PhysRevC.82.064315
  17. Y. Kanada-En'yo, T. Suhara, and F. Kobayashi, J. Phys. Conf. Ser. 321, 012009 (2011). https://doi.org/10.1088/1742-6596/321/1/012009
  18. V. Vasilevsky, F. Arickx, W. Vanroose, and J. Broeckhove, Phys. Rev. C 85, 034318 (2012). https://doi.org/10.1103/PhysRevC.85.034318
  19. V. Vasilevsky, A.V. Nesterov, F. Arickx, and J. Broeckhove, Phys. Rev. C 63, 034606 (2001). https://doi.org/10.1103/PhysRevC.63.034606
  20. V. Vasilevsky, A.V. Nesterov, F. Arickx, and J. Broeckhove, Phys. Rev. C 63, 034607 (2001). https://doi.org/10.1103/PhysRevC.63.034607
  21. J. Broeckhove, F. Arickx, P. Hellinckx et al., J. Phys. G Nucl. Phys. 34, 1955 (2007). https://doi.org/10.1088/0954-3899/34/9/008
  22. V. Vasilevsky, A.V. Nesterov, F. Arickx, and J. Broeckhove, Phys. Rev. C 63, 064604 (2001). https://doi.org/10.1103/PhysRevC.63.064604
  23. D.R. Thompson, M. LeMere, and Y.C. Tang, Nucl. Phys. A 286, 53 (1977). https://doi.org/10.1016/0375-9474(77)90007-0
  24. I. Reichstein and Y.C. Tang, Nucl. Phys. A 158, 529 (1970). https://doi.org/10.1016/0375-9474(70)90201-0