• Українська
  • English

< | >

Current issue   Ukr. J. Phys. 2014, Vol. 58, N 6, p.523-533
https://doi.org/10.15407/ujpe58.06.0523    Paper

Simulik V.M., Krivsky I.Yu., Lamer I.L.

Institute of Electron Physics, Nat. Acad. of Sci. of Ukraine
(21, Universytets’ka Str., Uzhgorod 88000, Ukraine; e-mail: vsimulik@gmail.com)

Bosonic Symmetries, Solutions, and Conservation Laws for the Dirac Equation with Nonzero Mass

Section: Fields and elementary particles
Original Author's Text: English

Abstract: In addition to the well-known Fermi properties of the Dirac equation, the hidden bosonic properties of this equation are found. The bosonic symmetries, solutions, and the conservation laws are under consideration. Such new features of the Dirac equation with nonzero mass are found with the help of the 64-dimensional extended real Clifford–Dirac algebra and 29- dimensional proper extended real Clifford–Dirac algebra. In this case, the start from the Foldy– Wouthuysen representation is of importance. It is shown that the Dirac equation can describe not only the fermionic but also the bosonic states.

Key words: bosonic symmetries, Dirac equation, Clifford–Dirac algebra.

References:

  1. V.M. Simulik and I.Yu. Krivsky, Dopov. NAN Ukr., No. 5, 82 (2010).
  2. I.Yu. Krivsky and V.M. Simulik, Cond. Matt. Phys. 13, 43101 (2010). https://doi.org/10.5488/CMP.13.43101
  3. V.M. Simulik and I.Yu. Krivsky, Phys. Lett. A 375, 2479 (2011). https://doi.org/10.1016/j.physleta.2011.03.058
  4. C.G. Darwin, Proc. Roy. Soc. London A 118, 654 (1928). https://doi.org/10.1098/rspa.1928.0076
  5. J.R. Oppenheimer, Phys. Rev. 38, 725 (1931). https://doi.org/10.1103/PhysRev.38.725
  6. R. Mignani, E. Recami, and M. Baldo, Lett. Nuovo Cim. 11, 572 (1974).
  7. R.H. Good, Phys. Rev. 105, 1914 (1957). https://doi.org/10.1103/PhysRev.105.1914
  8. H.E. Moses, Nuovo Cim. Suppl. 7, 1 (1958). https://doi.org/10.1007/BF02725084
  9. J.S. Lomont, Phys. Rev. 111, 1710 (1958). https://doi.org/10.1103/PhysRev.111.1710
  10. T.G. Nelson and R.H. Good, Phys. Rev. 179, 1445 (1969). https://doi.org/10.1103/PhysRev.179.1445
  11. E.A. Lord, Intern. J. Theor. Phys. 5, 349 (1972). https://doi.org/10.1007/BF00678225
  12. H. Sallhofer, Z. Naturforsch. A 33, 1379 (1978). https://doi.org/10.1515/zna-1978-1116
  13. K. Ljolje, Fortschr. Phys. 36, 9 (1988). https://doi.org/10.1002/prop.2190360103
  14. V.M. Simulik, Theor. Math. Phys. 87, 386 (1991). https://doi.org/10.1007/BF01016578
  15. V.M. Simulik and I.Yu. Krivsky, Adv. Appl. Cliff. Algebras 8, 69 (1998). https://doi.org/10.1007/BF03041926
  16. V.M. Simulik and I.Yu. Krivsky, Rep. Math. Phys. 50, 315 (2002). https://doi.org/10.1016/S0034-4877(02)80062-3
  17. V.M. Simulik, in What is the electron?, edited by V.M. Simulik (Montreal, Apeiron, 2005), p. 109.
  18. J. Keller, Adv. Appl. Cliff. Algebras 7, 3 (1997). https://doi.org/10.1007/BF03041224
  19. S.I. Kruglov, Ann. Fond. L. de Broglie 26, 725 (2001).
  20. Y. Xuegang, Z. Shuma, and H. Quinan, Adv. Appl. Cliff. Algebras 11, 27 (2001). https://doi.org/10.1007/BF03042037
  21. S.M. Grudsky, K.V. Khmelnytskaya, and V.V. Kravchenko, J. Phys. A 37, 4641 (2004). https://doi.org/10.1088/0305-4470/37/16/013
  22. R.S. Armour, jr., Found. Phys. 34, 815 (2004). https://doi.org/10.1023/B:FOOP.0000022188.90097.10
  23. V.V. Varlamov, Intern. J. Mod. Phys. A 20, 4095 (2005). https://doi.org/10.1142/S0217751X05025048
  24. T. Rozzi, D. Mencarelli, and L. Pierantoni, IEEE: Trans. Microw. Theor. Techn. 57, 2907 (2009). CrossRef
  25. A. Okninski, Symmetry 4, 427 (2012). https://doi.org/10.3390/sym4030427
  26. A.A. Campolattaro, Intern. J. Theor. Phys. 19, 99 (1980). https://doi.org/10.1007/BF00669764
  27. A.A. Campolattaro, Intern. J. Theor. Phys. 29, 141 (1990). https://doi.org/10.1007/BF00671324
  28. C. Daviau, Ann. Fond. L. de Broglie 14, 273 (1989).
  29. W.A. Rodrigues, jr., J. Vaz, jr., and E. Recami, in Directions in Microphysics, (Foundation Louis de Broglie, Paris, 1993), p. 379.
  30. L. Foldy and S. Wouthuysen, Phys. Rev. 78, 29 (1950). https://doi.org/10.1103/PhysRev.78.29
  31. L. Foldy, Phys. Rev. 102, 568 (1956). https://doi.org/10.1103/PhysRev.102.568
  32. L. Foldy, Phys. Rev. 122, 275 (1961). https://doi.org/10.1103/PhysRev.122.275
  33. P. Garbaczewski, Phys. Lett. A 73, 280 (1979). https://doi.org/10.1016/0375-9601(79)90533-4
  34. P. Garbaczewski, Intern. J. Theor. Phys. 25, 1193 (1986). https://doi.org/10.1007/BF00668690
  35. J.P. Elliott and P.G. Dawber, Symmetry in Physics (MacMillan, London, 1979).
  36. S.J. Wybourne, Classical Groups for Physicists (Wiley, New York, 1974).
  37. F. G¨ursey, Nuovo Cim. 7, 411 (1958). https://doi.org/10.1007/BF02747705
  38. N.H. Ibragimov, Theor. Math. Phys. 1, 267 (1969). https://doi.org/10.1007/BF01035741
  39. W.A. Hepner, Nuovo Cim. 26, 351 (1962). https://doi.org/10.1007/BF02787046
  40. M. Petras, Czech. J. Phys. 45, 455 (1995). https://doi.org/10.1007/BF01691683
  41. I.Yu. Krivsky, V.M. Simulik, T.M. Zajac, and I.L. Lamer, Proc. 14-th Int. Conf. "Mathematical Methods in Electromagnetic Theory" (Inst. of Radiophys. and Electr., Kharkiv, 2012), p. 201; arXiv: 1301.6343 [math-ph] 27 Jan 2013, 17 p.
  42. N.N. Bogoliubov and D.V. Shirkov, Introduction to the Theory of Quantized Fields (Wiley, New York, 1980).
  43. W. Krech, Wiss. Zeits. der Friedrich-Schiller Univ. Jena, Math.-Natur. Reine 18, 159 (1969).
  44. W. Krech, Wiss. Zeits. der Friedrich-Schiller Univ. Jena, Math.-Natur. Reine 21, 51 (1972).
  45. V.P. Neznamov, Phys. Part. Nucl. 37, 86 (2006). https://doi.org/10.1134/S1063779606010023
  46. B. Thaller, The Dirac Equation (Springer, Berlin, 1992).
  47. I.Yu. Krivsky and V.M. Simulik, Ukr. Phys. J. 52, 119 (2007).
  48. I.Yu. Krivsky, R.R. Lompay, and V.M. Simulik, Theor. Math. Phys. 143, 541 (2005). https://doi.org/10.1007/s11232-005-0089-7
  49. V.P. Neznamov and A.J. Silenko, J. Math. Phys. 50, 122302 (2009). https://doi.org/10.1063/1.3268592