• Українська
  • English

< | Next issue>

Current issue   Ukr. J. Phys. 2014, Vol. 58, N 6, p.596-603
https://doi.org/10.15407/ujpe58.06.0596    Paper

Pylypovskyi O.V.1, Sheka D.D.1, Kravchuk V.P.2, Gaididei Yu.B.2, Mertens F.G.3

1 Taras Shevchenko National University of Kyiv
(60, Volodymyrs’ka Str., 01601 Kyiv, Ukraine; e-mail: engraver@univ.net.ua)
2 Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine
(14b, Metrolohichna Str., Kyiv, 03680, Ukraine)
3 Physics Institute, University of Bayreuth
(95440 Bayreuth, Germany)

Mechanism of Fast Axially Symmetric Reversal of Magnetic Vortex Core

Section: Nanosystems
Original Author's Text: English

Abstract: The magnetic vortex core in a nanodot can be switched by an alternating transversal magnetic field. We propose a simple collective coordinate model, which describes the comprehensive vortex core dynamics, including the resonant behavior, weakly nonlinear regimes, and reversal dynamics. A chaotic dynamics of the vortex polarity is predicted. All analytical results are confirmed by micromagnetic simulations.

Key words: magnetic vortex, nanodot, nanodisk, vortex random-access memories.

  1. H.-B. Braun, Adv. in Phys. 61, 1 (2012), http:// www.tandfonline.com/doi/abs/10.1080/00018732.2012. 663070
  2. A. Wachowiak, J. Wiebe, M. Bode, O. Pietzsch, M. Morgenstern, and R. Wiesendanger, Science 298, 577 (2002), http://www.sciencemag.org/cgi/content/abstract/298/5593/577. https://doi.org/10.1126/science.1075302
  3. A. Hubert and R. Sch¨afer, Magnetic Domains: the Analysis of Magnetic Microstructures (Springer, Berlin, 1998).
  4. S.-K. Kim, K.-S. Lee, Y.-S. Yu, and Y.-S. Choi, Appl. Phys. Lett. 92, 022509 (2008). https://doi.org/10.1063/1.2807274
  5. Y.-S. Yu, H. Jung, K.-S. Lee, P. Fischer, and S.-K. Kim, Appl. Phys. Lett. 98, 052507 (2011). https://doi.org/10.1063/1.3551524
  6. Y.B. Gaididei, V.P. Kravchuk, D.D. Sheka, and F.G. Mertens, Low Temp. Phys. 34, 528 (2008). https://doi.org/10.1063/1.2957013
  7. V.P. Kravchuk, Y. Gaididei, and D.D. Sheka, Phys. Rev. B 80, 100405 (2009). https://doi.org/10.1103/PhysRevB.80.100405
  8. Y. Gaididei, V.P. Kravchuk, D.D. Sheka, and F.G. Mertens, Phys. Rev. B 81, 094431 (2010). https://doi.org/10.1103/PhysRevB.81.094431
  9. T. Okuno, K. Shigeto, T. Ono, K. Mibu, and T. Shinjo, J. Magn. Magn. Mater. 240, 1 (2002). https://doi.org/10.1016/S0304-8853(01)00708-9
  10. A. Thiaville, J.M. Garcia, R. Dittrich, J. Miltat, and T. Schrefl, Phys. Rev. B 67, 094410 (2003). https://doi.org/10.1103/PhysRevB.67.094410
  11. V. Kravchuk and D. Sheka, Phys. of Sol. State 49, 1923 (2007). https://doi.org/10.1134/S1063783407100186
  12. L. Vila, M. Darques, A. Encinas, U. Ebels, J.-M. George, G. Faini, A. Thiaville, and L. Piraux, Phys. Rev. B 79, 172410 (2009). https://doi.org/10.1103/PhysRevB.79.172410
  13. R. Wang and X. Dong, Appl. Phys. Lett. 100, 082402 (2012). https://doi.org/10.1063/1.3687909
  14. M.-W. Yoo, J. Lee, and S.-K. Kim, Appl. Phys. Lett. 100, 172413 (2012). https://doi.org/10.1063/1.4705690
  15. M. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (Dover, New York, 1964).
  16. J. Kevorkian and J. Cole, Perturbation Methods in Applied Mathematics (Springer, Berlin, 1981).
  17. A. Nayfeh, Problems in Perturbation (Wiley, New York, 1985).
  18. A. Nayfeh, Perturbation Methods (Wiley, New York, 2008).
  19. The Object Oriented MicroMagnetic Framework, note developed by M.J. Donahue and D. Porter mainly, from NIST. We used the 3D version of the 1.2α4 release, http://math.nist.gov/oommf/.
  20. S. Petit-Watelot, J.-V. Kim, A. Ruotolo, R.M. Otxoa, K. Bouzehouane, J. Grollier, A. Vansteenkiste, B. Van de Wiele, V. Cros, and T. Devolder, Nat. Phys. 8, 682 (2012).