• Українська
  • English

< | >

Current issue   Ukr. J. Phys. 2014, Vol. 58, N 5, p.490-496
https://doi.org/10.15407/ujpe58.05.0490    Paper

Bolesta I.M.1, Rovetskyi I.N.1, Partyka M.V.2, Karbovnyk I.D.1, Kulyk B.Ya.2

1 Ivan Franko National University of Lviv, Faculty of Electronics,
Chair of Radiophysics and Computer Technologies
(107, Gen. Tarnavs’kyi Str., Lviv 79017; e-mail: ivan.rovetskyj@mail.ru)
2 Ivan Franko National University of Lviv, Faculty of Physics,
Chair of Solid State Physics
(50, Drahomanov Str., Lviv 79005, Ukraine)

Formation of Nanostructures on the VdW-Surface of CdI2 Crystals

Section: Nanosystems
Original Author's Text: Ukrainian

Abstract: Morphological characteristics of nano-sized defects and nanostructures formed on the surface of CdI2 layered crystals have been studied, and the processes of their growth under conditions close to the thermodynamic equilibrium have been analyzed. The formation of nano-sized structures – nanoclusters and nanopores – emerging on the CdI2 surface after holding the crystals in air for some time is revealed for the first time. A mechanism of cluster formation is proposed, which includes a number of stages of cluster growth; these are the nucleation, formation of separate noninteracting nanoaggregates, and association of the latter into agglomerates. The major morphometric characteristics of nanostructures – their average radius and height, and the average distance between the nearest neighbors – are analyzed.

Key words: nanoclusters, nanopores, Van der Waals surfaces, Bridgman–Stockbarger method.


  1. M.A. Wahab and G.C. Trigunayat, Solid State Commun. 36, 885 (1981). https://doi.org/10.1016/0038-1098(80)90133-7
  2. Q.-J. Liu, Z.-T. Liu, and L.-P. Feng, Phys. Status Solidi B 248, 1629 (2011). https://doi.org/10.1002/pssb.201046481
  3. K. Ueno, K. Sasaki, K. Saiki, and A. Koma, Jpn. J. Appl. Phys. 38, 511 (1999). https://doi.org/10.1143/JJAP.38.511
  4. S.I. Drapak, A.P. Bakhtinov, S.V. Gavrilyuk, Yu.I. Prilutskii, and Z.D. Kovalyuk, Fiz. Tverd. Tela 48, 1515 (2006).
  5. W. Jaegermann, C. Pettenkofer, and B.A. Parkinson, Phys. Rev. B 42, 7487 (1990). https://doi.org/10.1103/PhysRevB.42.7487
  6. E. Wisotzki, A. Klein, W. Jaegermann, Thin Solid Films 380, 263 (2000). https://doi.org/10.1016/S0040-6090(00)01520-0
  7. O. Lang, R. Schlaf, Y. Tomm, C. Pettenkofer, and W. Jaegermann, J. Appl. Phys. 75, 7805 (1994). https://doi.org/10.1063/1.356562
  8. A.I. Dmitriev, Zh. Tekhn. Fiz. 82, 114 (2012).
  9. A.P. Bakhtinov, V.N. Vodop'yanov, E.I. Slyn'ko, Z.D. Kovalyuk, and O.S. Litvin, Pis'ma Zh. Tekhn. Fiz. 33, No. 2, 80 (2007).
  10. A.P. Bakhtinov, Z.R. Kudrinskii, and O.S. Litvin, Fiz. Tverd. Tela 53, 2045 (2011).
  11. A.P. Bakhtinov, Z.D. Kovalyuk, O.N. Sidor, V.N. Katerinchuk, and O.S. Litvin, Fiz. Tverd. Tela 49, 1497 (2007).
  12. A.I. Dmitriev, V.V. Vishnyak, G.V. Lashkarev, V.L. Karbovskii, Z.D. Kovalyuk, and A.P. Bakhtinov, Fiz. Tverd. Tela 53, 579 (2011).
  13. O.A. Balitskii, V.P. Savchyn, and Ya.M. Fiyala, Funct. Mater. 12, 206 (2005).
  14. O.A. Balitskii, Mater. Lett. 60, 594 (2006). https://doi.org/10.1016/j.matlet.2005.09.037
  15. O.A. Balitskii, J. Electr. Microsc. 55, 261 (2006). https://doi.org/10.1093/jmicro/dfl031
  16. O.A. Balitskii, V.P. Savchyn, B. Jaeckel, and W. Jaegerman, Physica E 22, 921 (2004). https://doi.org/10.1016/j.physe.2003.11.198
  17. R. Singh, S.B. Samanta, A.V. Narlikar, and G.C. Trigunayat, J. Cryst. Growth 204, 233 (1999). https://doi.org/10.1016/S0022-0248(99)00185-2
  18. R. Singh, S.B. Samanta, A.V. Narlikar, and G.C. Trigunayat, Bull. Mater. Sci. 23, 131 (2000). https://doi.org/10.1007/BF02706554
  19. B. Kumar and N. Sinha, Cryst. Res. Technol. 40, 887 (2005). https://doi.org/10.1002/crat.200410451
  20. R. Singh, S.B. Samanta, A.V. Narlikar, and G.C. Trigunayat, Surf. Sci. 422, 188 (1999). https://doi.org/10.1016/S0039-6028(98)00877-2
  21. N.-Y. Cui, N.M.D. Brown, and A. McKinley, Appl. Surf. Sci. 152, 266 (1999). https://doi.org/10.1016/S0169-4332(99)00325-6
  22. R. Popovitz-Biro, N. Sallacan, and R. Tenne, J. Mater. Chem. 13, 1631 (2003). https://doi.org/10.1039/b302505e
  23. N. Sallacan, R. Popovitz-Biro, and R. Tenne, Solid State Sci. 5, 905 (2003). https://doi.org/10.1016/S1293-2558(03)00110-9
  24. I.M. Bolesta, R.I. Gryts'kiv, Yu.P. Datsyuk, and B.M. Pavlyshenko, Ukr. Fiz. Zh. 48, 1 (2003).