• Українська
  • English

< | >

Current issue   Ukr. J. Phys. 2014, Vol. 58, N 5, p.472-479
https://doi.org/10.15407/ujpe58.05.0472    Paper

Kurchak A.I.1, Morozovska A.N.2, Strikha M.V.1

1 V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine
(41, Prosp. Nauky, Kyiv 03028, Ukraine; e-mail: maksym_strikha@hotmail.com)
2 Institute of Physics, Nat. Acad. of Sci. of Ukraine
(46, Prosp. Nauky, Kyiv 03028, Ukraine)

Rival Mechanisms of Hysteresis in the Resistivity of Graphene Channel

Section: Solid matter
Original Author's Text: Ukrainian

Abstract: A model for rival mechanisms of hysteresis that appears in the dependence of the resistivity of graphene channels created on substrates of various nature on the gate voltage has been developed. Two types of hysteresis were distinguished: direct (associated with the presence of adsorbates with dipole moments on the surface and the interface) and inverse (associated with the capture of charge carriers from the graphene layer by the localized states at the interface graphene–substrate). A capability of discerning between those channels by varying the rate of gate voltage sween was discussed. A good agreement is obtained between our theoretical predictions and the experimental data available in the literature.

Key words: graphene, mechanisms of hysteresis, adsorbates, surface dipoles.


  1. K.S. Novoselov, A.K. Geim, S.V. Morozov et al., Science 306, 666 (2004). https://doi.org/10.1126/science.1102896
  2. A.K. Geim, Science 324, 1530 (2009). https://doi.org/10.1126/science.1158877
  3. M.V. Strikha. Sensor Electr. Microsyst. Technol. 3, N 9, 5 (2012).
  4. Y. Zheng, G.-X. Ni, Z.-T. Toh et al., Appl. Phys. Lett. 94, 163505 (2009). https://doi.org/10.1063/1.3119215
  5. Y. Zheng, G.-X. Ni, Z.-T. Toh et al., Phys. Rev. Lett. 105, 166602 (2010). https://doi.org/10.1103/PhysRevLett.105.166602
  6. S. Raghavan, I. Stolichnov, N. Setter et al., Appl. Phys. Lett. 100, 023507 (2012). https://doi.org/10.1063/1.3676055
  7. J. Rouquette, J. Haines, V. Bornand et al., Phys. Rev. B 70, 014108 (2004). https://doi.org/10.1103/PhysRevB.70.014108
  8. X. Hong, J. Hoffman, A. Posadas et al., Appl. Phys. Lett. 97, 033114 (2010). https://doi.org/10.1063/1.3467450
  9. Y. Zheng, G.-X. Ni, S. Bae et al., Europhys. Lett. 93, 17002 (2011). https://doi.org/10.1209/0295-5075/93/17002
  10. E.B. Song, B. Lian, S.M. Kim et al., Appl. Phys. Lett. 99, 042109 (2011). https://doi.org/10.1063/1.3619816
  11. M.V. Strikha, Ukr. J. Phys. Opt. 12, 162 (2011). https://doi.org/10.3116/16091833/12/4/161/2011
  12. M.V. Strikha, JETP Lett. 95, 198 (2012). https://doi.org/10.1134/S002136401204008X
  13. A.I. Kurchak and M.V. Strikha, JETP 116, 112 (2013). https://doi.org/10.1134/S106377611301007X
  14. N. Lafkioti, B. Krauss, T. Lohmann et al., Nano Lett. 10, 1149 (2010). https://doi.org/10.1021/nl903162a
  15. H. Wang, Y. Wu, C. Cong et al., ACS Nano 4, 7221 (2010). https://doi.org/10.1021/nn101950n
  16. S.S. Sabri, P.L. Levesque, C.M. Aguirre et al., Appl. Phys. Lett. 95, 242104 (2009). https://doi.org/10.1063/1.3273396
  17. P.L. Levesque, S.S. Sabri, C.M. Aguirre et al., Nano Lett. 11, 132 (2011). https://doi.org/10.1021/nl103015w
  18. A. Veligura, in Zernike Institute PhD thesis series 2012-24 (2012), p. 53.
  19. S. Das Sarma, Sh. Adam, E.H. Hwang, and E. Rossi, Rev. Mod. Phys. 83, 407 (2011). https://doi.org/10.1103/RevModPhys.83.407
  20. Ju. Li, X. Xiao, F. Yang, M.W. Verbrugge, and Y.-T. Cheng, J. Phys. Chem. C 116, 1472 (2012). https://doi.org/10.1021/jp207919q
  21. S.V. Kalinin and A.N. Morozovska, submitted to J. Electroceram.
  22. S.H. Glarum, J. Chem. Phys. 33, 1371 (1960). https://doi.org/10.1063/1.1731414
  23. A. Veligura, P.J. Zomer, I.J. Vera-Marun et al., J. Appl. Phys. 110, 113708 (2011). https://doi.org/10.1063/1.3665196