• Українська
  • English

< | >

Current issue   Ukr. J. Phys. 2014, Vol. 58, N 5, p.458-464
https://doi.org/10.15407/ujpe58.05.0458    Paper

Shvets V.T.1, Kozytskiy S.V.2

1 Odessa National Academy of Food Technologies
(112, Kanatna Str., Odessa 65039, Ukraine; e-mail: tasir.onaft@gmail.com)
2 Odessa National Maritime Academy
(8, Didrikhson Str., Odessa 65029, Ukraine; e-mail: info@onma.edu.ua)

Thermodynamics of Metallic Helium

Section: Soft matter
Original Author's Text: Ukrainian

Abstract: The internal and free energies of liquid metallic helium are calculated for wide ranges of density and temperature, and the corresponding equation of state is obtained in the framework of perturbation theory. The electron-ion interaction potential is selected as a small parameter, and the calculations are carried out to the third order of smallness inclusive. Conduction electrons are considered in the random phase approximation with regard for the exchange interaction and correlations in the local field approximation. The hard-sphere model is used for the nuclear subsystem, the sphere diameter being the only parameter of the theory. The sphere diameter and the system density, at which helium transforms from the single- into double-ionized state are evaluated by analyzing the effective pair interaction between helium nuclei also in the third order of perturbation theory. The case of double-ionized helium atoms is considered. The third-order correction turns out substantial in all examined cases. The values obtained for thermodynamic parameters such as the density, temperature, and pressure fall within the ranges typical of the central regions of giant planets, which allows us to suppose the existence of metallic helium in the solar system.

Key words: liquid metallic helium, thermodynamic parameters, giant planets.


  1. E.G. Maximov and Yu.T. Shilov, Usp. Fiz. Nauk 169, 1223 (1999). https://doi.org/10.3367/UFNr.0169.199911c.1223
  2. V.E. Fortov, Usp. Fiz. Nauk 177, 347 (2007). https://doi.org/10.3367/UFNr.0177.200704c.0347
  3. S.T. Weir, A.C. Mitchell, and W.J. Nellis, Phys. Rev. Lett. 76, 1860 (1996). https://doi.org/10.1103/PhysRevLett.76.1860
  4. V.E. Fortov, V.Ya. Ternovoi, S.V. Kvitov, V.B. Mintsev, D.N. Nikolaev, A.A. Pyaling, and A.S. Filimonov, Pis'ma Zh. Eksp. Teor. Fiz. 69, 874 (1999).
  5. V.Ya. Ternovoi, A.S. Filimonov, V.E. Fortov, S.V. Kvitov, D.N. Nikolaev, and A.A. Pyaling, Physica B 265, 6 (1999). https://doi.org/10.1016/S0921-4526(98)01303-9
  6. M. Bastea, A.C. Mitchell, and W.J. Nellis, Phys. Rev. Lett. 86, 3108 (2001). https://doi.org/10.1103/PhysRevLett.86.3108
  7. R. Chau, A.C. Mitchell, R.W. Minich, and W.J. Nellis, Phys. Rev. Lett. 90, 245501 (2003). https://doi.org/10.1103/PhysRevLett.90.245501
  8. D.A. Young, A.K. McMahan, and M. Ross, Phys. Rev. B 24, 5119 (1981). https://doi.org/10.1103/PhysRevB.24.5119
  9. A. Kietzmann, B. Holst, R. Redmer, M.P. Desjarfais, and T.R. Mattsson, Phys. Rev. Lett. 98, 190602 (2007). https://doi.org/10.1103/PhysRevLett.98.190602
  10. S.A. Kharallah and B. Militzer, Phys. Rev. Lett. 101, 106407 (2008). https://doi.org/10.1103/PhysRevLett.101.106407
  11. L. Stixrude and R. Jeanloz, Proc. Nat. Acad. Sci. USA 105, 11071 (2008). https://doi.org/10.1073/pnas.0804609105
  12. E.G. Brovman, Yu.M. Kagan, and A. Kholas, Zh. Eksp. `Teor. Fiz. 61, 2429 (1971).
  13. E.G. Brovman and Yu.M. Kagan, Usp. Fiz. Nauk 112, 369 (1974). https://doi.org/10.3367/UFNr.0112.197403a.0369
  14. D.J. Stevenson and N.W. Ashcroft, Phys. Rev. A 9, 782 (1974). https://doi.org/10.1103/PhysRevA.9.782
  15. V.T. Shvets, Zh. Eksp. Teor. Fiz. ` 131, 743 (2007).
  16. W.A. Harrison, Pseudopotentials in the Theory of Metals (Benjamin, New York, 1966).
  17. V.T. Shvets, Green's Function Method in the Theory of Metals (Latstar, Odessa, 2002) (in Ukrainian).
  18. I.A. Vakarchuk, Introduction to Many-Body Problem (I. Franko Lviv Nat. Univ., Lviv, 1999) (in Russian).
  19. W.H. Shih and D. Stroud, Phys. Rev. B 31, 3715 (1985). https://doi.org/10.1103/PhysRevB.31.3715
  20. P. Lloyd and C.A. Shall, J. Phys. C 1, 1620 (1968).
  21. E.G. Brovman and Yu. Kagan, Zh. Eksp. Teor. Fiz. ` 63, 1937 (1972).
  22. E.G. Brovman and A. Kholas, Zh. Eksp. Teor. Fiz. ` 66, 1877 (1974).
  23. J. Hammerberg and N.W. Ashcroft, Phys. Rev. B 9, 3999 (1974). https://doi.org/10.1103/PhysRevB.9.409
  24. L. Ballentine and V. Heine, Philos. Mag. 9, 617 (1964). https://doi.org/10.1080/14786436408211874
  25. D.J.M. Geldart and S.H. Vosko, Can. J. Phys. 44, 2137 (1966). https://doi.org/10.1139/p66-174
  26. V.T. Shvets and E.V. Belov, Acta Phys. Pol. A 96, 741 (1999). https://doi.org/10.12693/APhysPolA.96.741
  27. V.T. Shvets, Phys. Metal. Metallogr. 89, 211 (2000).
  28. I.R. Yukhnovskii and M.F. Golovko, Statistical Theory of Classical Equilibrium Systems (Naukova Dumka, Kyiv, 1987) (in Russian).
  29. V.T. Shvets, S.V. Savenko, and Ye.K. Malinovskiy, Cond. Matter Phys. 9, 1 (2006). https://doi.org/10.5488/CMP.9.1.127
  30. S.D. Kaim, N.P. Kovalenko, and E.V. Vasiliu, J. Phys. Stud. 1, 589 (1997).
  31. V.T. Shvets, Pis'ma Zh. Eksp. Teor. Fiz. 95, 34 (2012).
  32. V.T. Shvets, T.V. Shvets, and Ya.Ye. Rachynskiy, Ukr. J. Phys. 55, 251 (2010).