• Українська
  • English

< | Next issue>

Current issue   Ukr. J. Phys. 2014, Vol. 58, N 5, p.497-504
https://doi.org/10.15407/ujpe58.05.0497    Paper

Yushchenko O.V., Badalyan A.Yu.

Sumy State University
(2, Ryms’kyi-Korsakov Str., Sumy 40007, Ukraine; e-mail: yushchenko@phe.sumdu.edu.ua)

Microscopic Description of Nonextensive Systems in the Framework of the Ising Model

Section: General problems of theoretical physics
Original Author's Text: Ukrainian

Abstract: To describe the behavior of nonextensive systems, the deformed Ising Hamiltonian is introduced by substituting the spin variable si by the deformed one sqi. In the framework of mean-field theory, the phase transition paramagnet–ferromagnet is investigated for the deformed partition function. The influence of the non-extensive parameter q on the free-energy density and the steady-state value of order parameter is studied in the Landau approximation.

Key words: Ising model, Hamiltonian, order parameter.

References:

  1. C. Tsallis, Introduction to Nonextensive Statistical Mechanics – Approaching a Complex World (Springer, New York, 2009).
  2. A. Taruya and M. Sakagami, Physica A 307, 185 (2002). https://doi.org/10.1016/S0378-4371(01)00622-7
  3. A. Lavagno, G. Kaniadakis, M. Rego-Monteiro et al., Astrophys. Lett. Commum. 35, 449 (1998).
  4. W. Alberico, A. Lavagno, and P. Quarati, Eur. Phys. J. C 12, 499 (1999). https://doi.org/10.1007/s100529900220
  5. M. Coraddu, G. Kaniadakis et al., Braz. J. Phys. 29, 153 (1999). https://doi.org/10.1590/S0103-97331999000100014
  6. G. Kaniadakis, A. Lavagno, and P. Quarati, Phys. Lett. B 369, 308 (1996). https://doi.org/10.1016/0370-2693(95)01535-3
  7. A. Lavagno and P. Quarati, Nucl. Phys. B Proc. Suppl. 87, 209 (2000). https://doi.org/10.1016/S0920-5632(00)00669-1
  8. F. Buyukkilic, I. Sokmen, and D. Demirhan, Chaos Solit. Fract. 13, 749 (2002). https://doi.org/10.1016/S0960-0779(01)00047-9
  9. S. Martinez, F. Pennini et al., Physica A 295, 224 (2001). https://doi.org/10.1016/S0378-4371(01)00078-4
  10. S. Martinez, F. Pennini, A. Plastino, and C. Tessone, Physica A 309, 85 (2002). https://doi.org/10.1016/S0378-4371(02)00621-0
  11. C. Tsallis, J.C. Anjos, and E.P. Borges, Phys. Lett. A 310, 372 (2003). https://doi.org/10.1016/S0375-9601(03)00377-3
  12. H. Uys, H.G. Miller, and F.C. Khanna, Phys. Lett. A 289, 264 (2001). https://doi.org/10.1016/S0375-9601(01)00587-4
  13. L. Salasnich, Int. J. Mod.Phys. B 14, 405 (2000).
  14. L. Borland and J.G. Menchero, Braz. J. Phys. 29, 169 (1999). https://doi.org/10.1590/S0103-97331999000100015
  15. N. Arimitsu and T. Arimitsu, Europhys. Lett. 60, 60 (2002). https://doi.org/10.1209/epl/i2002-00318-5
  16. E.K. Lenzi, C. Anteneodo, and L. Borland, Phys. Rev. E 63, 051109 (2001). https://doi.org/10.1103/PhysRevE.63.051109
  17. F.A. Tamarit, S.A. Cannas, and C. Tsallis, Eur. Phys. J. B 1, 545 (1998). https://doi.org/10.1007/s100510050217
  18. A.B. Adiba, A.A. Moreirab, J.S. Andrade et al., Physica A 322, 276 (2003). https://doi.org/10.1016/S0378-4371(02)01601-1
  19. Nonextensive Statistical Mechanics and Its Applications, edited by S. Abe and Y. Okamoto (Springer, Berlin, 2001).
  20. C. Tsallis, R.S. Mendes, and A.R. Plastino, Physica A 261, 534 (1998). https://doi.org/10.1016/S0378-4371(98)00437-3
  21. E.P. Borges, Physica A 340, 95 (2004). https://doi.org/10.1016/j.physa.2004.03.082
  22. H. Suyari, arXiv: cond-mat/0401541 (2004).
  23. R. Brout, Phase Transitions (Benjamin, New York, 1965). https://doi.org/10.1007/978-1-4899-6443-4_1
  24. A.I. Olemskoi and D.O. Kharchenko, Physica A 293, 178 (2001). https://doi.org/10.1016/S0378-4371(00)00601-4