• Українська
  • English

<Previous issue | >

Current issue   Ukr. J. Phys. 2014, Vol. 58, N 5, p.424-431
https://doi.org/10.15407/ujpe58.05.0424    Paper

Gorkavenko V.M.1, Sitenko Yu.A.2, Stepanov O.B.2

1 Faculty of Physics, Taras Shevchenko National University of Kyiv
(64, Volodymyrs’ka Str., Kyiv 01601, Ukraine; e-mail: gorka@univ.kiev.ua)
2 Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine
(14-b, Metrologichna Str., Kyiv 03680, Ukraine; e-mail: yusitenko@bitp.kiev.ua, pnd_@ukr.net)

Casimir Force Induced on a Plane by an Impenetrable Flux Tube of Finite Radius

Section: Fields and elementary particles
Original Author's Text: English

Abstract: A perfectly reflecting (Dirichlet) boundary condition at the edge of an impenetrable magneticflux-carrying tube of nonzero transverse size is imposed on the charged massive scalar matter field which is quantized outside the tube on a plane, which is transverse to the tube. We show that the vacuum polarization effects outside the tube give rise to a macroscopic force acting at the increase of the tube radius (if the magnetic flux is held steady).

Key words: vacuum polarization, Casimir effect, magnetic vortex.

References:

  1. H.B.G. Casimir, Proc. Kon. Ned. Akad. Wetenschap. B 51, 793 (1948);
  2. Physica 19, 846 (1953). https://doi.org/10.1016/S0031-8914(53)80095-9
  3. K.A. Milton, The Casimir Effect: Physical Manifestations of Zero-Point Energy (World Scientific, River Edge, 2001).https://doi.org/10.1142/4505
  4. M. Bordag, G.L. Klimchitskaya, U. Mohideen, and V.M. Mostepanenko, Advances in the Casimir Effect (Oxford Univ. Press, Oxford, 2009).https://doi.org/10.1093/acprof:oso/9780199238743.001.0001
  5. S.K. Lamoreax, Phys. Rev. Lett. 78, 5 (1997).https://doi.org/10.1103/PhysRevLett.78.5
  6. G. Bressi, G. Carugno, R. Onofrio, and G. Ruoso, Phys. Rev. Lett. 88, 041804 (2002).https://doi.org/10.1103/PhysRevLett.88.041804
  7. Y. Aharonov and D. Bohm, Phys. Rev. 115, 485 (1959).https://doi.org/10.1103/PhysRev.115.485
  8. Yu. A. Sitenko and A.Yu. Babansky, Mod. Phys. Lett. A 13, 379 (1998).https://doi.org/10.1142/S0217732398000437
  9. L.L. DeRaad, Jr. and K.A. Milton, Ann. Phys. (N.Y.) 136, 229 (1981).https://doi.org/10.1016/0003-4916(81)90097-X
  10.  
  11. P. Gosdzinsky and A. Romeo, Phys. Lett. B 441, 265 (1998).https://doi.org/10.1016/S0370-2693(98)01164-2
  12.  
  13. N. Graham, R.L. Jaffe, V. Khemani, M. Quandt, M. Scandurra, and H. Weigel, Phys. Lett. B 572, 196 (2003).https://doi.org/10.1016/j.physletb.2003.03.003
  14. G. Barton, Phys. Rev. D 73, 065018 (2006).https://doi.org/10.1103/PhysRevD.73.065018
  15. I. Cavero-Pelaez, K.A. Milton, and K. Kirsten, J. Phys. A: Math. Theor. 40, 3607 (2007).https://doi.org/10.1088/1751-8113/40/13/019
  16. M. Schaden, Phys. Rev. A 73, 042102 (2006).https://doi.org/10.1103/PhysRevA.73.042102
  17. R. Penrose, in: Relativity, Groups and Topology, edited by B.S. DeWitt, C. DeWitt (Gordon and Breach, New York, 1964).
  18. N.A. Chernikov and E.A. Tagirov, Ann. Inst. Henri Poincar’e A 9, 109 (1968).
  19. C.G. Callan, S. Coleman, and R. Jackiw, Ann. Phys. (N.Y.) 59, 42 (1970).https://doi.org/10.1016/0003-4916(70)90394-5
  20. V.M. Gorkavenko, Yu.A. Sitenko, and O.B. Stepanov, Int. J. Mod. Phys. A: 26, 3889 (2011).https://doi.org/10.1142/S0217751X11054346
  21. V.M. Gorkavenko, Yu.A. Sitenko, and O.B. Stepanov, J. Phys. A: Math. Theor. 43, 175401 (2010).https://doi.org/10.1088/1751-8113/43/17/175401
  22. E.T. Whittaker and G.N. Watson, The Euler-Maclaurin Expansion (Cambridge Univ. Press, Cambridge, 1990).
  23. Yu.A. Sitenko and V.M. Gorkavenko, Phys. Rev. D 67, 085015 (2003).https://doi.org/10.1103/PhysRevD.67.085015
  24. V.M. Gorkavenko and A.V. Viznyuk, Phys. Lett. B 604, 103 (2004).https://doi.org/10.1016/j.physletb.2004.10.043