< | >

Current issue   Ukr. J. Phys. 2014, Vol. 58, N 4, p.353-361
https://doi.org/10.15407/ujpe58.04.0353    Paper

Department of Mathematics, Faculty of Science, Benha University
(Benha, Egypt; e-mails: mohamedmbd@yahoo.com, ah_mg_sh@yahoo.com)

Numerical Solution for the Effect of Variable Fluid Properties on the Flow and Heat Transfer in a Non-Newtonian Maxwell Fluid over an Unsteady Stretching Sheet with Internal Heat Generation

Section: Soft matter
Original Author's Text: English

Abstract: This article looks at the flow and heat transfer in the unsteady two-dimensional boundary layer of a non-Newtonian Maxwell fluid over a stretching sheet in the presence of variable fluid properties and internal heat generation. The governing differential equations are transformed into a set of coupled non-linear ordinary differential equations and then solved numerically, by using the appropriate boundary conditions for various physical parameters. The numerical solution for the governing non-linear boundary-value problem is based on applying the Chebyshev spectral method over the entire range of physical parameters. The effects of various parameters like the viscosity parameter, thermal conductivity parameter, unsteadiness parameter, heat generation parameter, Maxwell parameter, and Prandtl number on the flow and temperature profiles, as well as on the local skin-friction coefficient and the local Nusselt number, are presented and discussed. Comparison of numerical results is made with the earlier published results in limiting cases. A special attention is given to the effect of the viscosity parameter, thermal conductivity parameter, and heat generation parameter on the velocity and temperature fields above the sheet.

Key words: Maxwell fluid, unsteady stretching sheet, variable fluid properties, internal heat generation, Chebyshev spectral method.

References:

1. L.J. Crane, Z. Angew Math. Phys. 21, 645 (1970). https://doi.org/10.1007/BF01587695
2. P.S. Gupta and A.S. Gupta, Can. J. Chem. Eng. 55, 744 (1977). https://doi.org/10.1002/cjce.5450550619
3. W.H.H. Banks, J. Mech. Theor. Appl. 2, 375 (1983).
4. L.J. Grubka and K.M. Bobba, AME J. Heat Transfer 107, 248 (1985). https://doi.org/10.1115/1.3247387
5. C.K. Chen and M. Char, J. Math. Anal. Appl. 35, 568 (1988). https://doi.org/10.1016/0022-247X(88)90172-2
6. E. Magyari and B. Keller, J. Phys. D. Appl. Phys. 32, 2876 (1999). https://doi.org/10.1088/0022-3727/32/22/308
7. T.R. Mahapatra and A.S. Gupta, Canad. J. of Chem. Engin. 81, 258 (2003). https://doi.org/10.1002/cjce.5450810210
8. I. Pop and T. Na, Mech. Res. Comm. 23, 413 (1996). https://doi.org/10.1016/0093-6413(96)00040-7
9. E.M.A. Elbashbeshy and M.A.A. Bazid, Appl. Math. and Comp. 138, 239 (2003). https://doi.org/10.1016/S0096-3003(02)00106-6
10. E.M.A. Elbashbeshy and M.A.A. Bazid, J. of Heat and Mass Transfer 41, 1 (2004). https://doi.org/10.1007/s00231-004-0520-x
11. M.E. Ali and E. Magyari, Int. J. of Heat Mass Transfer 50, 188 (2007). CrossRef
12. M.A. El-Aziz, Int. Commun. Heat and Mass Transfer 36, 521 (2009). https://doi.org/10.1016/j.icheatmasstransfer.2009.01.016
13. A. Ishak, R. Nazar, and I. Pop, Nonlin. Analysis: Real World Appl. 10, 2909 (2009).
14. M.A. El-Aziz, Meccanica 45, 97 (2010). https://doi.org/10.1007/s11012-009-9227-x
15. K.R. Rajagopal, Int. J. Non-Linear Mech. 17, 369 (1982). https://doi.org/10.1016/0020-7462(82)90006-3
16. W.C. Tan, P.W. Xiao, and X.M. Yu, Int. J. Non-Linear Mech. 38, 645 (2003). https://doi.org/10.1016/S0020-7462(01)00121-4
17. C.H. Chen, J. of Heat and Mass Transfer 39, 791 (2003). https://doi.org/10.1007/s00231-002-0363-2
18. C.H. Chen, J. Non-Newton. Fluid Mech. 135, 128 (2006).
19. C. Fetecau, M. Athar, and C. Fetecau, Comput. Math. Appl. 57, 596 (2009). https://doi.org/10.1016/j.camwa.2008.09.052
20. M.S. Abel, J. Tawade, and M.M. Nandeppanavar, Int. J. Non-Linear Mech. 44, 990 (2009). https://doi.org/10.1016/j.ijnonlinmec.2009.07.004
21. M.A.A. Mahmoud and A.M. Megahed, Canad. J. of Phys. 87, 1065 (2009). https://doi.org/10.1139/P09-066
22. W.W. Bell, Special Functions for Scientists and Engineers (Dover, New York, 2004).
23. S.E. El-Gendi, Computer J. 12, 282 (1969). https://doi.org/10.1093/comjnl/12.3.282
24. M.M. Khader, Comm. in Nonlin. Sci. and Numer. Sim. 16, 2535 (2011).
25. N.H. Sweilam and M.M. Khader, ANZIAM 51, 464 (2010). https://doi.org/10.1017/S1446181110000830
26. A.J. Chamkha and A.A. Khaled, J. of Heat Mass Transfer. 37, 117 (2001). https://doi.org/10.1007/s002310000131
27. M.S. Abel, J. Tawade, and M.M. Nandeppanavar, Meccanica, DOI 10.1007/s11012-011-9448-7. https://doi.org/10.1007/s11012-011-9448-7
28. P.G. Siddheshwar and U.S. Mahabaleswar, Int. J. NonLinear Mech. 40, 807 (2005). https://doi.org/10.1016/j.ijnonlinmec.2004.04.006