• Українська
  • English

< | >

Current issue   Ukr. J. Phys. 2014, Vol. 58, N 4, p.341-344
https://doi.org/10.15407/ujpe58.04.0341    Paper

Blonskyi I.V., Kadan V.M., Dergachev A.A., Shlenov S.A., Kandidov V.P., Puzikov V.M., Grin’ L.O.

1 Institute of Physics, Nat. Acad. of Sci. of Ukraine
(46, Nauky Ave., Kyiv 03680, Ukraine; e-mail: kadan@iop.kiev.ua)
2 Department of Physics and International Laser Center,
M.V. Lomonosov Moscow State University
(Moscow 119899, Russia; e-mail: shlenov@physics.msu.ru)
3 Institute for Single Crystals, Nat. Acad. of Sci. of Ukraine
(60, Lenin Ave., Kharkiv 61178, Ukraine; e-mail: info@isc.kharkov.com)

Filamentation of Femtosecond Vortex Beam in Sapphire

Section: Optics, lasers, and quantum electronics
Original Author's Text: Ukrainian

Abstract: Filamentation of powerful femtosecond beams with a vortex of the topological charge l = 2 in sapphire is studied. A method to control the azimuthal position of filaments by changing the phase difference between two coherent co-axial beams, vortex and vortex-free reference ones, is proposed and demonstrated. The observed misalignment between the paths of filaments generated by the vortex and vortex-free beams, when they cross at a small angle is explained in terms of the spiral propagation of filaments around the vortex optical axis.

Key words: filamentation, femtosecond, vortex beams, topological charge.


  1. J.F. Nye and M.V. Berry, Proc. R. Soc. Lond. A 336, 165 (1974). https://doi.org/10.1098/rspa.1974.0012
  2. M.S. Soskin and M.V. Vasnetsov, in Progress in Optics, edited by E. Wolf, (Elsevier, Amsterdam, 2001), p. 219.
  3. M. Vasnetsov and K. Staliunas, Optical Vortices (Nova Science, New York, 1999).
  4. M.S. Soskin, V.N. Gorshkov, M.V. Vasnetsov, J.T. Malos, and N.R. Heckenberg, Phys. Rev. A 56, 4064 (1997). https://doi.org/10.1103/PhysRevA.56.4064
  5. M. Vasnetsov, V. Pas'ko, A. Khoroshun, V. Slyusar, and M. Soskin, Opt. Lett. 32, 1830 (2007). https://doi.org/10.1364/OL.32.001830
  6. M. Soskin, M. Vasnetsov, V. Denisenko, and V. Slyusar, New Directions in Holography and Speckles (Amer. Sci. Publ., New York, 2008).
  7. D.L.Andrews, Structured Light and Its Applications, (Academic Press, San Diego, CA, 2008).
  8. G. Gibson, J. Courtial, M. Padgett, M. Vasnetsov, V. Pas'ko, S. Barnett, and S. Franke-Arnold, Opt. Express 12, 5448 (2004). https://doi.org/10.1364/OPEX.12.005448
  9. M.S. Bigelow, P. Zerom, and R.W. Boyd, Phys. Rev. Lett. 92, 083902 (2004). https://doi.org/10.1103/PhysRevLett.92.083902
  10. D.N. Neshev, A. Dreischuh, G. Maleshkov, M. Samoc, and Y.S. Kivshar, Opt. Express 18, 18368 (2010). https://doi.org/10.1364/OE.18.018368
  11. P. Hansinger, A. Dreischuh, and G.G. Paulus, Appl. Phys. B 104, 561 (2011). https://doi.org/10.1007/s00340-011-4649-2
  12. T.D. Grow, A. Ishaaya, A.L. Gaeta, G. Fibich, G.W. 't Hooft, and E.R. Eliel, Phys. Rev. Lett. 96, 133901 (2006). https://doi.org/10.1103/PhysRevLett.96.133901
  13. S. Shiffler, P. Polynkin, and J. Moloney, Opt. Lett. 36, 3834 (2011). https://doi.org/10.1364/OL.36.003834
  14. O. Khasanov, T. Smirnova, O. Fedotova, G. Rusetsky, and O. Romanov, Appl. Opt. 51, C198 (2012). https://doi.org/10.1364/AO.51.00C198
  15. A. Vin¸cotte and L. Berg’e, Phys. Rev. Lett. 95, 193901 (2005). https://doi.org/10.1103/PhysRevLett.95.193901
  16. V.G. Shvedov, C. Hnatovsky, W. Krolikowski, and A.V. Rode, Opt. Lett. 35, 2660 (2010). https://doi.org/10.1364/OL.35.002660
  17. A.A. Dergachev, V.N. Kadan, and S.A. Shlyonov, Kvant. Elektron. 42, 125 (2012). https://doi.org/10.1070/QE2012v042n02ABEH014751
  18. A. Couairon and A. Mysyrowicz, Phys. Rep. 441, 47 (2007). https://doi.org/10.1016/j.physrep.2006.12.005
  19. Ting-Ting Xi, Xin Lu, and Jie Zhang, Phys. Rev. Lett. 96, 025003 (2006). https://doi.org/10.1103/PhysRevLett.96.025003