• Українська
  • English

< | >

Current issue   Ukr. J. Phys. 2014, Vol. 58, N 4, p.326-334
https://doi.org/10.15407/ujpe58.04.0326    Paper

Abed Haider Jabber1,2, Din N.M.2, Al-Mansoori M.H.3, Abdullah F.2, Fadhil Hilal A.4

1 Department of Electrical Engineering, College of Engineering, University of Babylon
(Babel-City, Iraq; e-mail: haiderlaser@yahoo.com)
2 Centre for Communications Service Convergence Technologies,
College of Engineering, Universiti Tenaga National
(Jalan IKRAM-Uniten, 43000 Kajang, Malaysia)
3 Faculty of Engineering, Sohar University
(PO Box 44, PCI 311, Sohar, Oman)
4 School of Computer Engineering, Universiti Malaysia Perlis

Comparison Among Different Types of Advanced Modulation Formats Under Four Wave Mixing Effects

Section: Optics, lasers, and quantum electronics
Original Author's Text: English

Abstract: Advanced modulation formats play a significant role for enhancing the bit rate in an optical transmission system. Ultra-long haul transmission distances are intensively investigated to further increase the spectral efficiency for building the next-generation optical networks. However, under a high data rate, the effects of a fiber nonlinearity such as the four-wave mixing (FWM) give a significant lower system performance. In this paper, a system simulation is performed to compare the robustness of four types of modulation formats such as Return-to-Zero Frequency Shift Keying (RZ-FSK), Non- Return-to-Zero Frequency Shift Keying (NRZ-FSK), Differential Phase Shift Keying (DPSK), and Duobinary (DB) to the FWM effect, where the performances were mainly characterized by eye opening penalties and Bit Error Rate (BER). It was found that the FWM power is the lowest with the DPSK modulation format and reaches –55 dBm, while, in the presence of RZ-FSK modulation, it reaches a maximum value and is equal to –14 dBm. In addition, the the DPSK gives a low value of BER of 4.56×10-68 in comparison with RZ-FSK modulation that offers BER in the range of 2.83×10-14 . It can be concluded that the DPSK modulation can be a crucial component to suppress the FWM effect in a wavelength division multiplexing system.

Key words: four-wave mixing, modulation format, nonlinear effect, DPSK, RZ-FSK.


  1. J. Winzer and R.-J. Essiambre, J. of Light Wave Techn. 24, No. 12 (2006). https://doi.org/10.1109/JLT.2006.885260
  2. T. Hussein, Abd, S.A. Aljunid, H.A. Fadhil, M.N. Junita, and N.M. Saad, Ukr. J. Phys. Opt. 13, No. 2 (2012).
  3. M.J. Guy, Suppression of Four-Wave Mixing in Ultra Dense WDM Optical Communication Systems through Optical Fiber Dispersion Map Design, U.S. Patent 6690886 B1, Feb (2004).
  4. G. Keiser, Optical Fiber Communications (McGraw-Hill, New York, 2008).
  5. R. Ramaswami and K.N. Sivarajan, Optical Networks (M. Kauffman, San Francisco, 2002).
  6. Osamu Aso, Masateru Tadakuma, and Shu Namiki, Furukuwa Elect. Rev. 19, 63 (2000).
  7. N. Chi, J. Zhang, P.V. Holm-Nielsen, L. Xu, I.T. Monroy, C. Peucheret, K. Yvind, L.J. Christiansen, and P. Jeppesen, Electron. Lett. 39, 676 (2003).  https://doi.org/10.1049/el:20030425
  8. W. Idler Klekamp and R. Dischler, in Proc. ECOC 03, Rimini, Italy (2003), p. 118.
  9. A. Gnauck and P. Winzer, J. Light. Technol. 23(1), 115 (2005). https://doi.org/10.1109/JLT.2004.840357
  10. P.J. Winzer and R.J. Essiambre, in Proc. ECOC 2003, Rimini, Italy (2003), p. 1002.
  11. T. Kawanishi, T. Sakamoto, T. Miyazaki, and M. Izutsukk, Opt. Exp. 14(10), 4469 (2006). https://doi.org/10.1364/OE.14.004469
  12. M.Z. Rahman, M.S. Islam, T. Rahman, and S.M.A. Islam, Int. J. on Internet and Distrib. Comput. Systems 1, No. 2 (2011).
  13. T. Laxman, J. Shantanu, K. Premanand, and D. Shankar, Int. J. of Distrib. and Parall. Systems (IJDPS) 1, No. 2 (2010).
  14. Emdadul Hague, in Proceed. of the 6th Intern. Conf. on Electrical and Computer Engineering, ICECE 2010, Dhaka, Bangladesh.
  15. Y. Shao, N. Chi, C. Hou, W. Fang, J. Zhang, Bo. Huang, X. Li, S. Zou, X. Liu, X. Zheng, N. Zhang, Y. Fang, J. Zhu, L. Tao, and D. Huang, J. Light. Technol. 28, 1770 (2010). https://doi.org/10.1109/JLT.2010.2048413
  16. T. Sabapathi and S. Sundaravadivelu, Optik 122, 1453 (2011). https://doi.org/10.1016/j.ijleo.2010.08.023
  17. A. Singh, A. Sharma, and T.S. Kamal, Optik 119, 788 (2008). https://doi.org/10.1016/j.ijleo.2007.03.009
  18. S. Gao and G. Jin, Appl. Opt. 42, 7126 (2003). https://doi.org/10.1364/AO.42.007126
  19. R. Kaler and R.S. Kaler, Optik 123, 352 (2012). https://doi.org/10.1016/j.ijleo.2011.01.017
  20. J.G. Proakis, Digital Communications (McGraw-Hill, New York, 1989).
  21. J.C. Adalid, Modulation Format Conversion in Future OpticalNetworks (Technical University of Denmark, Lyngby, 2009), MSc Thesis.