• Українська
  • English

< | >

Current issue   Ukr. J. Phys. 2014, Vol. 58, N 4, p.378-384
https://doi.org/10.15407/ujpe58.04.0378    Paper

Lysenkov E.A.1,2, Yakovlev Yu.V.1, Klepko V.V.1

1 Institute of Macromolecular Chemistry, Nat. Acad. of Sci. of Ukraine
(48, Kharkivske Road, Kyiv 02160, Ukraine; e-mail: ealisenkov@mail.ru)
2 V.O. Sukhomlyns’kiy Mykolaiv National University
(24, Nikol’s’ka Str., Mykolaiv 54030, Ukraine)

Percolation Properties of Systems Based on Polypropylene Glycol and Carbon Nanotubes

Section: Nanosystems
Original Author's Text: Ukrainian

Abstract: Impedance spectroscopy researches have been carried out for the electric and dielectric properties of systems based on polypropylene glycol and carbon nanotubes. The fractal behavior of those systems was revealed. The corresponding percolation threshold of 0.45% was found. The critical index of conductivity t = 1.43 was determined in the framework of the scaling approach. The processes of charge transfer in the systems concerned were found to be described well by the intercluster polarization model.

Key words: impedance spectroscopy research, percolation threshold, carbon nanotubes.

References:

  1. D. Stauffer and A. Aharony, Introduction to Percolation Theory (Taylor and Francis, London, 1994).
  2. Z. Chen, Encycl. Nanosci. Nanotech. 7, 919 (2004).
  3. J. Zhang, M. Mine, D. Zhu, and M. Matsuo, Carbon 47, 1311 (2009). https://doi.org/10.1016/j.carbon.2009.01.014
  4. J.K.W. Sandler, J.E. Kirk, I.A. Kinloch, M.S.P. Shaffer, and A.H. Windle, Polymer 44, 5893 (2003). https://doi.org/10.1016/S0032-3861(03)00539-1
  5. A. Mierczynska, M. Mayne-L'Hermite, and G. Boiteux, J. Appl. Polym. Sci. 105, 158 (2007). https://doi.org/10.1002/app.26044
  6. S. McCullen, D. Stevens, W. Roberts, S. Ojha, L. Clarke, and R. Gorga, Macromolecules 40, 997 (2007). https://doi.org/10.1021/ma061735c
  7. A.V. Melezhyk, Yu.I. Sementsov, and V.V. Yanchenko, Russ. J. Appl. Chem. 78, 971 (2005). https://doi.org/10.1007/s11167-005-0430-9
  8. A. Kyritsis, P. Pissis, and J. Grammatikakis, J. Polym. Sci. B 33, 1737 (1995). https://doi.org/10.1002/polb.1995.090331205
  9. S. Kirkpatrick, Phys. Rev. Lett. 27, 1722 (1971). https://doi.org/10.1103/PhysRevLett.27.1722
  10. I. Webman, J. Jortner, and M.H. Cohen, Phys. Rev. B 16, 2593 (1977). https://doi.org/10.1103/PhysRevB.16.2593
  11. L. Wang and Z.M. Dang, Appl. Phys. Lett. 87, 42903 (2005). https://doi.org/10.1063/1.1996842
  12. V. Antonucci, G. Faiella, M. Giordano, L. Nicolais, and G. Pepe, Macromol. Symp. 247, 172 (2007). https://doi.org/10.1002/masy.200750120
  13. D.M. Grannan, J.C. Garland, and D.B. Tanner, Phys. Rev. Lett. 46, 375 (1981). https://doi.org/10.1103/PhysRevLett.46.375
  14. B. Kilbride, J. Coleman, J. Fraysse, P. Fournet, M. Cadek, A. Drury, S. Hutzler, S. Roth, and W.J. Blau, J. Appl. Phys. 92, 4024 (2002). https://doi.org/10.1063/1.1506397
  15. D.J. Bergman and Y. Imry, Phys. Rev. Lett. 39, 1222 (1997). https://doi.org/10.1103/PhysRevLett.39.1222
  16. Y. Gefen, A. Aharony, and S. Alexander, Phys. Rev. Lett. 50, 77 (1983). https://doi.org/10.1103/PhysRevLett.50.77
  17. Y. Song, T.W. Noh, S.I. Lee, and J.R. Gaines, Phys. Rev. B 33, 904 (1986). https://doi.org/10.1103/PhysRevB.33.904
  18. D. Wilkinson, J.S. Langer, and P.N Sen, Phys. Rev. B 28, 1081 (1983). https://doi.org/10.1103/PhysRevB.28.1081
  19. A.B. Harris, Phys. Rev. B 28, 2614 (1983). https://doi.org/10.1103/PhysRevB.28.2614
  20. J. Wu and D.S. McLachlan, Phys. Rev. B 58, 14880 (1998). https://doi.org/10.1103/PhysRevB.58.14880
  21. M.E. Achour, C. Brosseau, and F. Carmona, J. Appl. Phys. 103, 094103 (2008). https://doi.org/10.1063/1.2912985