• Українська
  • English

< | >

Current issue   Ukr. J. Phys. 2014, Vol. 58, N 3, p.268-277
https://doi.org/10.15407/ujpe58.03.0268    Paper

Dotsenko I.S., Korobka R.S.

Taras Shevchenko National University of Kyiv
(4, Prosp. Academician Glushkov, Kyiv 03127, Ukraine; e-mail: ivando@ukr.net, roman.korobka@gmail.com)

Teleportation of Quantum Entangled Two-Photon States in the Presence of Noise

Section: General problems of theoretical physics
Original Author's Text: Ukrainian

Abstract: On the basis of a system of four qubits, the influence of white and colored noises in the states of initially prepared entangled qubit pairs on the final state obtained as a result of the entanglement swapping has been considered. The corresponding density matrices are obtained, and the redistribution of fractions for the pure state and white and colored noises is analyzed. Conditions for the entanglement preservation and destruction in the course of the transition from the initial to the final state are determined. A comparison between the von Neumann entropy for the initial and final states of qubits is carried out.

Key words: entanglement swapping, teleportation, density matrix, von Neumann entropy.

References:

  1. A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev. 47, 777 (1935). https://doi.org/10.1103/PhysRev.47.777
  2. E. Schr¨odinger, Naturwiss. 23, 807 (1935). https://doi.org/10.1007/BF01491891
  3. J.S. Bell, Physics 1, 195 (1964).
  4. M. Zukowski, A. Zeilinger, M.A. Horne, and A.K. Ekert, Phys. Rev. Lett. 71, 4287 (1993). https://doi.org/10.1103/PhysRevLett.71.4287
  5. W. Dur, H.J. Briegel, J.I. Cirac, and P. Zoller, Phys. Rev. A 59, 169 (1999). https://doi.org/10.1103/PhysRevA.59.169
  6. Z.Y. Xue, Y.M. Yi, and Z.L. Cao, Chin. Phys. 15, 1421 (2006). https://doi.org/10.1088/1009-1963/15/7/006
  7. J. Wei-Pan, D. Bouwmeester, and H. Weinfurter, Phys. Rev. Lett. 80, 3891 (1998). https://doi.org/10.1103/PhysRevLett.80.3891
  8. T. Jennewein, G. Weihs, J.-W. Pan, and A. Zeilinger, Phys. Rev. Lett. 88, 017903 (2002). https://doi.org/10.1103/PhysRevLett.88.017903
  9. H. de Riedmatten, I. Marcikic, J.A.W. van Houwelingen, W. Tittel, H. Zbinden, and N. Gisin, Phys. Rev. A 71, 050302 (2005). https://doi.org/10.1103/PhysRevA.71.050302
  10. C.Y. Lu, T. Yang, and J.W. Pan, Phys. Rev. Lett. 103, 020501 (2009). https://doi.org/10.1103/PhysRevLett.103.020501
  11. A. Scherer, R. Howard, B.C. Sanders, and W. Tittel, Phys. Rev. A 80, 062310 (2009). https://doi.org/10.1103/PhysRevA.80.062310
  12. C.H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W.K. Wooters, Phys. Rev. Lett. 70, 1895 (1993). https://doi.org/10.1103/PhysRevLett.70.1895
  13. A. Karlsson and M. Bourennane, Phys. Rev. A 58, 4394 (1998). https://doi.org/10.1103/PhysRevA.58.4394
  14. B.S. Shi and A. Tomita, Phys. Lett. A 296, 161 (2002). https://doi.org/10.1016/S0375-9601(02)00257-8
  15. L. Li and D. Qiu, J. Phys. A 40, 10871 (2007). https://doi.org/10.1088/1751-8113/40/35/010
  16. R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, Rev. Mod. Phys. 81, 865 (2009). https://doi.org/10.1103/RevModPhys.81.865
  17. C.Y. Hu and J.G. Rarity, Phys. Rev. B 83, 115303 (2011). https://doi.org/10.1103/PhysRevB.83.115303
  18. R.F. Werner, Phys. Rev. A 40, 4277 (1989). https://doi.org/10.1103/PhysRevA.40.4277
  19. A. Peres, Phys. Rev. Lett. 77, 1413 (1996). https://doi.org/10.1103/PhysRevLett.77.1413
  20. M. Horodecki, P. Horodecki, and R. Horodecki, Phys. Lett. A 223, 8 (1996). https://doi.org/10.1016/S0375-9601(96)00706-2
  21. A. Cabello and A. Feito, Phys. Rev. A 72, 052112 (2005). https://doi.org/10.1103/PhysRevA.72.052112
  22. F.A. Bovino, and G. Castagnoli, Phys. Rev. A 73, 062110 (2006). https://doi.org/10.1103/PhysRevA.73.062110
  23. I.S. Dotsenko and V.G. Voronov, Ukr. J. Phys. 53, 1006 (2008).