• Українська
  • English

< | >

Current issue   Ukr. J. Phys. 2014, Vol. 58, N 3, p.260-267
https://doi.org/10.15407/ujpe58.03.0260    Paper

Litovchenko N.M., Korbutyak D.V., Strilchuk O.M.

V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine
(41, Prosp. Nauky, Kyiv 03028, Ukraine; e-mail: strilchuk@isp.kiev.ua)

Excitonic Parameters of InxGa1-xAs-GaAs Heterostructures with Quantum Wells at Low Temperatures.

Section: Nanosystems
Original Author's Text: Ukrainian

Abstract: Characteristics of GaAs/InxGa1−xAs/GaAs heterostructures with a single quantum well, which were obtained at various growth parameters, are evaluated according to the results of measurements of low-temperature photoluminescence (PL) spectra and their corresponding theoretical analysis. The experimentally obtained temperature dependences of the energy position of the PL band maximum, hνmax, band half-width, W0, and intensity, I, are examined. The values of energy of local phonons, Eph, exciton binding energy, Eex, and the Huang–Rhys factor, N, are determined. A comparison between the values obtained for those quantities and the growth parameters of considered specimens allowed us to assert that the highest-quality specimens are those that are characterized by low N values and one-mode phonon spectra.

Key words: photoluminescence, quantum well, exciton, phonon.

References:

  1. I.A. Avrutskii, V.A. Sychugov, and B.A. Usievich, Fiz. Tekh. Poluprovodn. 25, 1787 (1991).
  2. I.A. Avrutskii and V.G. Litovchenko, Fiz. Tekh. Poluprovodn. 31, 875 (1997).
  3. M.M. Grigoriev, E.G. Gule, A.I. Klimovska, Yu.A. Korus, and V.G. Litovchenko, Ukr. Fiz. Zh. 45, 853 (2000).
  4. I.A. Avrutskii, O.P. Osaulenko, V.G. Plotnichenko, and Yu.N. Pyrkov, Fiz. Tekh. Poluprovodn. 26, 1907 (1992).
  5. H.D. Sun, R. Macaluso, S. Calvez, and M.D. Dawson, J. Appl. Phys. 94, 7581 (2003). https://doi.org/10.1063/1.1627950
  6. N.V. Kryzhanovskaya, A.Yu. Egorov, V.V. Mamutin, N.K. Polyakov, A.F. Tsatsulnikov, A.R. Kovsh, N.N. Ledentsov, V.M. Ustinov, and D. Bimberg, Fiz. Tekh. Poluprovodn. 39, 735 (2005).
  7. F.-I. Lai, S.Y. Kuo, J.S. Wang, R.S. Hsiao, H.C. Kuo, J. Chi, S.C. Wang, H.S. Wang, C.T. Liang, and Y.F. Chen, J. Cryst. Growth 291, 27 (2006). https://doi.org/10.1016/j.jcrysgro.2006.02.028
  8. M. Soltani, M. Certier, R. Evrard, and E. Kartheusev, J. Appl. Phys. 78, 5626 (1995). https://doi.org/10.1063/1.359686
  9. S.I. Pekar, Zh. Eksp. Teor. Fiz. 20, 510 (1950).
  10. C.J. Hwang, Phys. Rev. 180, 827 (1969). https://doi.org/10.1103/PhysRev.180.827
  11. V.G. Litovchenko, N.L. Dmitruk, D.V. Korbutyak, and A.V. Sarikov, Fiz. Tekh. Poluprovodn. 36, 447 (2002).
  12. V.A. Zuev, D.V. Korbutyak, V.G. Litovchenko, and A.V. Drazhan, Fiz. Tverd. Tela 17, 3300 (1975).
  13. I. Bolesta, Solid State Physics (Lviv, Lviv. Nats. Univ., 2003) (in Ukrainian).