• Українська
  • English

< | >

Current issue   Ukr. J. Phys. 2014, Vol. 58, N 3, p.249-259
https://doi.org/10.15407/ujpe58.03.0249    Paper

Yeshchenko O.A.

Faculty of Physics, Taras Shevchenko National University of Kyiv
(4, Prosp. Academician Glushkov, Kyiv 03127, Ukraine; e-mail: yes@univ.kiev.ua)

Temperature Effects on the Surface Plasmon Resonance in Copper Nanoparticles

Section: Nanosystems
Original Author's Text: English

Abstract: The temperature dependences of the energy and the width of a surface plasmon resonance are studied for copper nanoparticles 17–59 nm in size in the silica host matrix in the temperature interval 293–460 K. An increase of the temperature leads to the red shift and the broadening of the surface plasmon resonance in Cu nanoparticles. The obtained dependences are analyzed within the framework of a theoretical model considering the thermal expansion of a nanoparticle, the electron-phonon scattering in a nanoparticle, and the temperature dependence of the dielectric permittivity of the host matrix. The thermal expansion is shown to be the main mechanism responsible for the temperature-induced red shift of the surface plasmon resonance in copper nanoparticles. The thermal volume expansion coefficient for Cu nanoparticles is found to be size-independent in the studied size range. Meanwhile, the increase of the electron-phonon scattering rate with the temperature is shown to be the dominant mechanism of the surface plasmon resonance broadening in copper nanoparticles.

Key words: surface plasmon resonance, copper nanoparticles, temperature-induced effects.

References:

  1. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, Berlin, 1995). C.F. Bohren and D.R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, Chichester, 1998).
  2. B.G. Ershov, E. Janata, A. Henglein, and A. Fojtik, J Phys. Chem. 97, 4589 (1993). https://doi.org/10.1021/j100120a006
  3. A. Henglein, J. Phys. Chem. 97, 5457 (1993). https://doi.org/10.1021/j100123a004
  4. A. Barhoumi, D. Zhang, F. Tam, and N. Halas, J. Am. Chem. Soc. 130, 5523 (2008). https://doi.org/10.1021/ja800023j
  5. F. Le, D. Brandl, Y. Urzhumov, H. Wang, J. Kundu, N. Halas, J. Aizpurua, and P. Nordlander, ACS Nano 2, 707 (2008). https://doi.org/10.1021/nn800047e
  6. G. Laurent, N. Felidj, J. Grand, J. Aubard, G. Levi, A. Hohenau, J. Krenn, and F. Aussenegg, J. of Microsc.-Oxford 229, 189 (2008).
  7. R. Bakker, H. Yuan, Z. Liu, V. Drachev, A. Kildishev, V. Shalaev, R. Pedersen, S. Gresillon, and A. Boltasseva, Appl. Phys. Lett. 92, 043101 (2008). https://doi.org/10.1063/1.2836271
  8. G. Gay, B. de Lesegno, R. Mathevet, J. Weiner, H. Lezec, and T. Ebbesen, Appl. Phys. B 81, 871 (2005). https://doi.org/10.1007/s00340-005-2016-x
  9. O.A. Yeshchenko, I.M. Dmitruk, A.A. Alexeenko, M.Yu. Losytskyy, A.V. Kotko, and A.O. Pinchuk, Phys. Rev. B 79, 235438 (2009). https://doi.org/10.1103/PhysRevB.79.235438
  10. A. Gobin, M. Lee, R. Drezek, N. Halas, and J. West, Clin. Cancer Res. 11, 9095S (2005).
  11. C. Hubert, A. Rumyantseva, G. Lerondel, J. Grand, S. Kostcheev, L. Billot, A. Vial, R. Bachelot, and P. Royer, Nano Lett. 5, 615 (2005). https://doi.org/10.1021/nl047956i
  12. K. Kandere-Grzybowska, C. Campbell, Y. Komarova, B. Grzybowski, and G. Borisy, Nature Methods 2, 739 (2005). https://doi.org/10.1038/nmeth796
  13. M. Choi, K.J. Stanton-Maxey, J.K. Stanley, C.S. Levin, R. Bardhan, D. Akin, S. Badve, J. Sturgis, J.P. Robinson, R. Bashir, N.J. Halas, and S.E. Clare, Nano Lett. 7, 3759 (2007). https://doi.org/10.1021/nl072209h
  14. L. Hirsch, A. Gobin, A. Lowery, F. Tam, R. Drezek, N. Halas, and J. West, Annals Biomed. Engineering 34, 15 (2006). https://doi.org/10.1007/s10439-005-9001-8
  15. D. O'Neal, L. Hirsch, N. Halas, J. Payne, and J. West, Cancer Lett. 209, 171 (2004). https://doi.org/10.1016/j.canlet.2004.02.004
  16. D. Citrin, Nano Lett. 5, 985 (2005). https://doi.org/10.1021/nl050513+
  17. J. Jung, T. Sondergaard, and S. Bozhevolnyi, Phys. Rev. B 76, 035434 (2007). https://doi.org/10.1103/PhysRevB.76.035434
  18. K. Leosson, T. Nikolajsen, A. Boltasseva, and S. Bozhevolnyi, Opt. Express 14, 314 (2006). https://doi.org/10.1364/OPEX.14.000314
  19. B. Steinberger, A. Hohenau, H. Ditlbacher, A. Stepanov, A. Drezet, F. Aussenegg, A. Leitner, and J. Krenn, Appl. Phys. Lett. 88, 094104 (2006). https://doi.org/10.1063/1.2180448
  20. J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, Opt. Lett. 22, 475 (1997). https://doi.org/10.1364/OL.22.000475
  21. U. Kreibig, Appl. Phys. B 93, 79 (2008). https://doi.org/10.1007/s00340-008-3213-1
  22. W.A. Challener, C. Peng, A.V. Itagi, D. Karns, W. Peng, Y. Peng, X.M. Yang, X. Zhu, N.J. Gokemeijer, Y.-T. Hsia, G. Ju, R.E. Rottmayer, M.A. Seigler, and E.C. Gage, Nature Photon. 3, 303 (2009). https://doi.org/10.1038/nphoton.2009.71
  23. L.R. Hirsch, R.J. Stafford, J.A. Bankson, S.R. Sershen, B. Rivera, R.E. Price, J.D. Hazle, N.J. Halas, and J.L. West, Proc. Natl. Acad. Sci. USA 100, 13549 (2003). https://doi.org/10.1073/pnas.2232479100
  24. A. Lowery, A. Gobin, E. Day, N. Halas, and J. West, Breast Cancer Res. Treat. 100, S289 (2006).
  25. A. Lowery, A. Gobin, E. Day, N. Halas, and J. West, Int. J. Nanomed. 1, 149 (2006). https://doi.org/10.2147/nano.2006.1.2.149
  26. L. Cao, D.N. Barsic, A.R. Guichard, and M.L. Brongersma, Nano Lett. 7, 3523 (2007). https://doi.org/10.1021/nl0722370
  27. W. Cai, J.S. White, and M.L. Brongersma, Nano Lett. 9, 4403 (2009). https://doi.org/10.1021/nl902701b
  28. U. Kreibig, J. Phys. F 4, 999 (1974). https://doi.org/10.1088/0305-4608/4/7/007
  29. R.H. Doremus, J. Chem. Phys. 40, 2389 (1964). https://doi.org/10.1063/1.1725519
  30. R.H. Doremus, J. Chem. Phys. 42, 414 (1965). https://doi.org/10.1063/1.1695709
  31. P. Mulvaney, in Nanoscale Materials in Chemistry, edited by K.J. Klabunde (Wiley, New York, 2001), p. 121. https://doi.org/10.1002/0471220620.ch5
  32. J.-S.G. Bouillard, W. Dickson, D.P. O'Connor, G.A. Wurtz, and A.V. Zayats, Nano Lett. 12, 1561 (2012). https://doi.org/10.1021/nl204420s
  33. D.Yu. Fedyanin, A.V. Krasavin, A.V. Arsenin, and A.V. Zayats, Nano Lett. 12, 2459 (2012). https://doi.org/10.1021/nl300540x
  34. S. Link and M.A. El-Sayed, J. Phys. Chem. B 103, 4212 (1999). https://doi.org/10.1021/jp984796o
  35. O.A. Yeshchenko, I. M. Dmitruk, A.A. Alexeenko, A.V. Kotko, J. Verdal, and A.O. Pinchuk, Plasmonics 7, 685 (2012). https://doi.org/10.1007/s11468-012-9359-z
  36. U. Kreibig and U. Genzel, Surf. Sci. 156, 678 (1985). https://doi.org/10.1016/0039-6028(85)90239-0
  37. S. Link and M. El-Sayed, J. Phys. Chem. B 103, 8410 (1999). https://doi.org/10.1021/jp9917648
  38. C. Kittel, Introduction to Solid State Physics (Wiley, New York, 2005).
  39. N.I. Grigorchuk and P.M. Tomchuk, Phys. Rev. B 84 085448 (2011). https://doi.org/10.1103/PhysRevB.84.085448
  40. K. Ujihara, J Appl. Phys. 43, 2374 (1972). https://doi.org/10.1063/1.1661506
  41. N.W. Ashcroft and N. D. Mermin, Solid State Physics (Saunders College, Philadelphia, 1976).
  42. R.H. Bube, Electrons in Solids: An Introductory Survey (Academic Press, London, 1992).
  43. Z. Li-Jun, G. Jian-Gang, and Z. Ya-Pu, Chin. Phys. Lett. 26, 066201 (2009). https://doi.org/10.1088/0256-307X/26/6/066201
  44. J.H. Wray and J.T. Neu, J. Opt. Soc. Am. 59, 774 (1969). https://doi.org/10.1364/JOSA.59.000774
  45. P.B. Johnson and R.W. Christy, Phys. Rev. B 6, 4370 (1972). https://doi.org/10.1103/PhysRevB.6.4370
  46. R.C. Lincoln, K.M. Koliwad, and P.B. Ghate, Phys. Rev. 157, 463 (1967). https://doi.org/10.1103/PhysRev.157.463