• Українська
  • English

< | >

Current issue   Ukr. J. Phys. 2014, Vol. 58, N 3, p.237-242
https://doi.org/10.15407/ujpe58.03.0237    Paper

Brodin A.1,2

1 Institute of Physics, Nat. Acad. of Sci. of Ukraine
(46, Prosp. Nauky, Kyiv 03028, Ukraine; e-mail: alex.brodin@gmail.com)
2 National Technical University of Ukraine “KPI”
(37, Peremogy Ave., Kyiv 03056, Ukraine)

Mechanisms for Anomalous Diffusion in a Nematic Environment

Section: Soft matter
Original Author's Text: English

Abstract: Mechanisms for anomalous diffusion of colloidal particles in a nematic environment are theoretically investigated. It is shown that thermal fluctuations of the nematic director may couple to the translational and orientational motions of particles, which leads to anomalous diffusion. Both superdiffusion, when the mean square displacement increases with the time faster than linearly, and subdiffusion, when this dependence is slower than linear, are possible. For micrometer-sized particles, the anomalous diffusion effects are expected on millisecond time scales.

Key words: anomalous diffusion, nematic environment.

References:

  1. R. Brown, Phil. Mag. 4, 161 (1828).
  2. A. Einstein, Ann. Phys. (Leipzig) 17, 549 (1905). https://doi.org/10.1002/andp.19053220806
  3. M. von Smoluchowski, Ann. Phys. (Leipzig) 21, 756 (1906). https://doi.org/10.1002/andp.19063261405
  4. P. Langevin, C. R. Acad. Sci. (Paris) 146, 530 (1908).
  5. B.J. Berne and R. Pecora, Dynamic Light Scattering (Wiley, New York, 1976).
  6. H. Scher and M. Lax, Phys. Rev. B 7, 4491 (1973). https://doi.org/10.1103/PhysRevB.7.4491
  7. J. Sprakel, J. van der Gucht, M.A.C. Stuart, and N.A.M. Besseling, Phys. Rev. Lett. 99, 208301 (2007). https://doi.org/10.1103/PhysRevLett.99.208301
  8. A. Ott, J.P. Bouchaud, D. Langevin, and W. Urbach, Phys. Rev. Lett. 65, 2201 (1990). https://doi.org/10.1103/PhysRevLett.65.2201
  9. G.L. Paul and P.N. Pusey, J. Phys. A: Math. Gen. 14, 3301 (1981). https://doi.org/10.1088/0305-4470/14/12/025
  10. H. Stark, Phys. Rep. 351, 387 (2001). https://doi.org/10.1016/S0370-1573(00)00144-7
  11. P.G. de Gennes and J. Prost, The Physics of Liquid Crystals (Clarendon, Oxford, 1993).
  12. J.C. Loudet, P. Hanusse, and P. Poulin, Science 306, 1525 (2004). https://doi.org/10.1126/science.1102864
  13. P.G. de Gennes, C. R. Acad. Sci. (Paris) 266, 15 (1968).
  14. Groupe d'Etude des Cristaux Liquides (Orsay), J. Chem. Phys. 51, 816 (1969).
  15. T.C. Lubensky, D. Pettey, N. Currier, and H. Stark, Phys. Rev. E 57, 610 (1998). https://doi.org/10.1103/PhysRevE.57.610
  16. Y. Han, A.M. Alsayed, M. Nobili, J. Zhang, T.C. Lubensky, A.G. Yodh, Science 314, 626 (2006). https://doi.org/10.1126/science.1130146
  17. H. Stark and D. Ventzki, Europhys. Lett. 57, 60 (2002). https://doi.org/10.1209/epl/i2002-00541-0
  18. H. Stark, D. Ventzki, and M. Reichert, J. Phys.: Condens. Matter 15, S191 (2003). https://doi.org/10.1088/0953-8984/15/1/324
  19. B.J. Berne, J.P. Boon, and S.A. Rice, J. Chem. Phys. 45, 1086 (1966). https://doi.org/10.1063/1.1727719