• Українська
  • English

< | >

Current issue   Ukr. J. Phys. 2014, Vol. 58, N 3, p.228-236
https://doi.org/10.15407/ujpe58.03.0228    Paper

Semenov I.L.

E.O. Paton Electric Welding Institute
(11, Bozhenko Str., Kyiv 03680, Ukraine; e-mail: isemenov.paton@gmail.com)

Ion Drag Force on a Charged Macroparticle in Collisionless Plasma

Section: Plasmas and gases
Original Author's Text: English

Abstract: The problem of calculating the ion drag force acting on a charged macroparticle in collisionless flowing plasma is studied by using an approach based on the direct numerical solution of the Vlasov kinetic equations for plasma components. A uniform plasma flow past a spherical macroparticle is considered. The computations are carried out for different particle sizes and different flow velocities. On the basis of the obtained results the effect of particle size on the ion drag force is analyzed. It is shown that when the particle size is much less than the Debye length in plasma, the ion drag force can be calculated with good accuracy by means of the conventional binary collision approach. A modified version of the binary collision approach is proposed to calculate the ion drag force in the case where the particle size becomes comparable to the Debye length in plasma. It is shown that there is a reasonable agreement between the results obtained using the numerical solution of the kinetic equations and that obtained by the modified binary collision approach.

Key words: ion drag force, collisionless plasma, binary collision approach.

References:

  1. M.S. Barnes, J.H. Keller, J.C. Forster, J.A. O'Neill, and D.K. Coultas, Phys. Rev. Lett. 68, 313 (1992). https://doi.org/10.1103/PhysRevLett.68.313
  2. G.E. Morfill, H.M. Thomas, U. Konopka, H. Rothermel, M. Zuzic, A. Ivlev, and J. Goree, Phys. Rev. Lett. 83, 1598 (1999). https://doi.org/10.1103/PhysRevLett.83.1598
  3. S.V. Vladimirov and N.F. Cramer, Phys. Rev. E 62, 2754 (2000). https://doi.org/10.1103/PhysRevE.62.2754
  4. N. D'Angelo, Phys. Plasmas 5, 3155 (1998). https://doi.org/10.1063/1.873042
  5. A.V. Ivlev, D. Samsonov, J. Goree, G. Morfill, and V.E. Fortov, Phys. Plasmas 6, 741 (1999). https://doi.org/10.1063/1.873311
  6. S.A. Khrapak and V.V. Yaroshenko, Phys. Plasmas 10, 4616 (2003). https://doi.org/10.1063/1.1621398
  7. V.N. Tsytovich, Phys. Usp. 40, 53 (1997). https://doi.org/10.1070/PU1997v040n01ABEH000201
  8. S.A. Khrapak, A. Ivlev, and G. Morfill, Phys. Rev. E 64, 046403 (2001). https://doi.org/10.1103/PhysRevE.64.046403
  9. S.A. Khrapak, S.K. Zhdanov, A.V. Ivlev, and G.E. Morfill, J. Appl. Phys. 101, 033307 (2007). https://doi.org/10.1063/1.2464187
  10. L. Patacchini and I.H. Hutchinson, Phys. Rev. Lett. 101, 025001 (2008). https://doi.org/10.1103/PhysRevLett.101.025001
  11. A.V. Filippov, A.G. Zagorodny, A.I. Momot, A.F. Pal', and A.N. Starostin, JETP 108, 497 (2009). https://doi.org/10.1134/S1063776109030145
  12. M.D. Kilgore, J.E. Daugherty, R.K. Porteous, and D.B. Graves, J. Appl. Phys. 73, 7195 (1993). https://doi.org/10.1063/1.352392
  13. S.A. Khrapak, A.V. Ivlev, G.E. Morfill, and H.M. Thomas, Phys. Rev. E 66, 046414 (2002). https://doi.org/10.1103/PhysRevE.66.046414
  14. S.A. Khrapak, A.V. Ivlev, G.E. Morfill, and S.K. Zhdanov, Phys. Rev. Lett. 90, 225002 (2003). https://doi.org/10.1103/PhysRevLett.90.22500
  15. S.A. Khrapak, A.V. Ivlev, S.K. Zhdanov, and G.E. Morfill, Phys. Plasmas 12, 042308 (2005). https://doi.org/10.1063/1.1867995
  16. T. Bystrenko and A. Zagorodny, Phys. Lett. A 299, 383 (2002). https://doi.org/10.1016/S0375-9601(02)00661-8
  17. H.M. Mott-Smith and I. Langmuir, Phys. Rev. 28, 727, (1926). https://doi.org/10.1103/PhysRev.28.727
  18. U. de Angelis, Physica Scripta 45, 465 (1992). 19. J.E. Allen, Physica Scripta 45, 497 (1992).
  19. J.E. Allen, Physica Scripta 45, 497 (1992).
  20. J.E. Allen, B.M. Annaratone, and U. de Angelis, J. Plasma Physics 63, 299 (2000). https://doi.org/10.1017/S0022377800008345
  21. C.T.N. Willis, M. Coppins, M. Bacharis, and J.E. Allen, Phys. Rev E 85, 036403 (2012). https://doi.org/10.1103/PhysRevE.85.036403
  22. I.L. Semenov, A.G. Zagorodny, and I.V. Krivtsun, Phys. Plasmas 18, 103707 (2011). https://doi.org/10.1063/1.3646918
  23. I.L. Semenov, A.G. Zagorodny, and I.V. Krivtsun, Phys. Plasmas 19, 043703 (2012). https://doi.org/10.1063/1.3701556
  24. H. Sugimoto and Y. Sone, Phys. Fluids A 4, 419 (1992). https://doi.org/10.1063/1.858313
  25. L. Mieussens, J. Comput. Phys. 162, 429 (2000). https://doi.org/10.1006/jcph.2000.6548
  26. P. Persson and G. Strang, SIAM Review 46, 329 (2004). https://doi.org/10.1137/S0036144503429121
  27. P. Batten, C. Lambert, and D.M. Causon, Int. J. Num. Methods Eng. 39, 1821 (1996). https://doi.org/10.1002/(SICI)1097-0207(19960615)39:113.0.CO;2-E
  28. E.F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction (Springer, Berlin, 2009). https://doi.org/10.1007/b79761
  29. O.C. Zienkiewicz and R. L. Taylor, The Finite Element Method: The Basis (Butterworth-Heinemann, Oxford, 2000).
  30. J.E. Daugherty, R.K. Porteous, M.D. Kilgore, and D.B. Graves, J. Appl. Phys. 72, 3934 (1992). https://doi.org/10.1063/1.352245