• Українська
  • English

<Previous issue | >

Current issue   Ukr. J. Phys. 2014, Vol. 58, N 3, p.211-227
https://doi.org/10.15407/ujpe58.03.0211    Paper

Oliinychenko D.R.1, Bugaev K.A.2, Sorin A.S.1

1 Bogoliubov Laboratory of Theoretical Physics
(6, Joliot-Curie Str., JINR, Dubna 141980, Russia; e-mail: dimafopf@gmail.com,
2 Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine
(14b, Metrolohichna Str., Kyiv 03680, Ukraine; e-mail: bugaev@th.physik.uni-frankfurt.de)

Investigation of Hadron Multiplicities and Hadron Yield Ratios in Heavy Ion Collisions

Section: Fields and elementary particles
Original Author's Text: English

Abstract: We thoroughly discuss some weak points of the thermal model, which is traditionally used
to describe the hadron multiplicities measured in the central nucleus-nucleus collisions. In
particularly, the role of conservation laws and the values of hard-core radii along with the
effects of the Lorentz contraction of hadron eigenvolumes and the hadronic surface tension are
systematically studied. It is shown that, for the adequate description of hadron multiplicities,
the conservation laws should be modified, whereas the conservation laws are not necessary at
all for the description of hadron yield ratios. We analyzed the usual criteria for the chemical
freeze-out and found that none of them is robust. A new chemical freeze-out criterion of
constant entropy per hadron equals to 7.18 is suggested, and a novel effect of adiabatic chemical
hadron production is discussed. Additionally, we found that the data for the center-of-mass
energies above 10 GeV lead to the temperature of the nil hadronic surface tension coefficient
of about T0 = 147 ± 7 MeV. This is a very intriguing result, since a very close estimate for
such a temperature was obtained recently within an entirely different approach. We argue that
these two independently obtained results evidence that the (tri)critical temperature of a QCD
phase diagram is between 140 and 154 MeV. In addition, we suggest to consider the pion and
kaon hard-core radii as new fitting parameters. Such an approach allows us, for the first time,
to simultaneously describe the hadron multiplicities and the Strangeness Horn and to get a
high-quality fit of the available experimental data.

Key words: hadron resonance gas, second virial coefficients, chemical freeze-out


  1. P. Braun-Munzinger, K. Redlich and J. Stachel, arXiv:0304013v1 [nucl-th] and references therein.
  2. A. Andronic, P. Braun-Munzinger, and J. Stachel, Nucl. Phys. A 772,167 (2006); arXiv:0511071v3 [nucl-th].
  3. A. Andronic, P. Braun-Munzinger, and J. Stachel, arXiv:0812.1186v3 [nucl-th].
  4. G.D. Yen and M.I. Gorenstein, Phys. Rev. C 59, 2788 (1999). https://doi.org/10.1103/PhysRevC.59.2788
  5. G.D. Yen, M.I. Gorenstein, W. Greiner, and S.N. Yang, Phys. Rev. C 56, 2210 (1997). https://doi.org/10.1103/PhysRevC.56.2210
  6. A. Andronic, P. Braun-Munzinger, J. Stachel, and M. Winn, arXiv:1201.0693v1 [nucl-th].
  7. S. Wheaton and J. Cleymans, arXiv:0407174 [hep-ph].
  8. L.M. Satarov, M.N. Dmitriev, and I.N. Mishustin, Phys. Atom. Nucl. 72, 1390 (2009). https://doi.org/10.1134/S1063778809080146
  9. D. Adamova et al. (CERES collaboration), Phys. Rev. Lett. 90, 022301 (2003); arXiv:0207008 [nucl-ex]; M. Lisa, S. Pratt, R. Soltz, and U. Wiedemann, Ann. Rev. Nucl. Part. Sci. 55, 357 (2005); arXiv:0505014 [nucl-ex].
  10. A. Bohr and B.R. Mottelson, Nuclear Structure, Vol.1, (Benjamin, New York, 1969).
  11. P. Braun-Munzinger, I. Heppe, and J. Stachel arXiv:9903010v2 [nucl-th].
  12. G.D. Yen, M.I. Gorenstein, W. Greiner, and S.N. Yang, Phys. Rev. C 56, 2210 (1997). https://doi.org/10.1103/PhysRevC.56.2210
  13. P. Braun-Munzinger, J. Stachel, J.P. Wesselsa, and N. Xu, Phys. Lett. B 344, 43 (1995); arXiv:9410026 [nucl-th]; Phys. Lett. B 365, 1 (1996); arXiv:9508020 [nucl-th].
  14. J. Cleymans, D. Elliott, A. Keranen, and E. Suhonen, Phys. Rev. C 57, 3319 (1998); arXiv:9711066 [nuclth];J. Cleymans, H. Oeschler, and K. Redlich, Phys. Rev. C 59, 1663 (1999); arXiv:809027 [nucl-th].
  15. R. Averbeck, R. Holzmann, V. Metag, and R.S. Simon, Phys. Rev. C 67, 024903 (2003); arXiv:0012007 [nucl-ex].
  16. P. Braun-Munzinger, I. Heppe, and J. Stachel, Phys. Lett. B 465, 15 (1999); arXiv:9903010 [nucl-th].
  17. P. Braun-Munzinger, D. Magestro, K. Redlich, and J. Stachel, Phys. Lett. B 518, 41 (2001); arXiv:0105229 [nucl-th].
  18. W. Broniowski, W. Florkowski, and M. Michalec, Acta Phys. Polon. B 33, 761 (2002); arXiv:0106009 [nucl-th]; W. Broniowski and W. Florkowski, Phys. Rev. C 65, 064905 (2002); arXiv:0112043 [nucl-th].
  19. M. Kaneta and N. Xu, arXiv:0405068 [nucl-th].
  20. J. Adams et al. (STAR collaboration), Nucl. Phys. A 757, 102 (2005); arXiv:0501009 [nucl-ex].
  21. R. Preghenella, arXiv:1111.7080 [hep-ex].
  22. P. Braun-Munzinger and J. Stachel, Nucl. Phys. A 638, 3c (1998); arXiv:9803015 [nucl-ex].
  23. J. Cleymans,H. Oeschler, K. Redlich, and S. Wheaton, Phys. Rev. C 73, 034905 (2006), J. Phys. G 32, S165 (2006). https://doi.org/10.1088/0954-3899/32/12/S21
  24. K.A. Bugaev, M.I. Gorenstein, H. St¨ocker, and W. Greiner, Phys. Lett. B 485, 121 (2000). https://doi.org/10.1016/S0370-2693(00)00690-0
  25. G. Zeeb, K.A. Bugaev, P.T. Reuter, and H. St¨ocker, Ukr. J. Phys. 53, 279 (2008).
  26. F. Becattini, M. Gazdzicki, A. Keranen, J. Manninen, and R. Stock, Phys. Rev. C 69, 024905 (2004). https://doi.org/10.1103/PhysRevC.69.024905
  27. A. Dumitru, L. Portugal, and D. Zschiesche, Phys. Rev. C 73, 024902 (2006); arXiv:0511084 [nucl-th].
  28. K.A. Bugaev, V.K. Petrov, and G.M. Zinovjev, Europhys. Lett. 85, 22002 (2009); arXiv:0801.4869v2 [hepph] and references therein. https://doi.org/10.1209/0295-5075/85/22002
  29. K.A. Bugaev, Nucl. Phys. A 807, 251 (2008); arXiv:1012.3400 [nucl-th]. https://doi.org/10.1016/j.nuclphysa.2008.04.007
  30. R.A. Ritchie, M.I. Gorenstein, and H.G. Miller, Z. Phys. C 75 2002 (1997). https://doi.org/10.1007/s002880050497
  31. R.K. Pathria, Statistical Mechanics (Pergamon Press, Oxford, 1972).
  32. K.A. Bugaev, Phys. Rev. C 76, 014903 (2007)  https://doi.org/10.1103/PhysRevC.76.014903; Phys. Atom. Nucl. 71, 1615 (2008);
  33. A.I. Ivanytskyi, Nucl. Phys. A 880, 12 (2012). https://doi.org/10.1016/j.nuclphysa.2012.02.004
  34. K.A. Bugaev, V.K. Petrov, and G.M. Zinovjev, Phys. Part. Nucl. Lett. 9, 397 (2012). https://doi.org/10.1134/S1547477112030065
  35. K.A. Bugaev and G.M. Zinovjev, Nucl. Phys. A 848, 443 (2010) https://doi.org/10.1016/j.nuclphysa.2010.09.007; K.A. Bugaev, Phys. Part. Nucl. Lett. 8, 907 (2011). https://doi.org/10.1134/S1547477111090093
  36. K.A. Bugaev, A.I. Ivanytskyi, E.G. Nikonov, V.K. Petrov, A.S. Sorin, and G.M. Zinovjev, Phys. Atom. Nucl. 75, 1 (2012). https://doi.org/10.1134/S1063778812060075
  37. M.E. Fisher, Physics 3, 255 (1967).
  38. K.A. Bugaev, M.I. Gorenstein, I. N. Mishustin, and W. Greiner, Phys. Rev. C 62, 044320 (2000)  https://doi.org/10.1103/PhysRevC.62.044320; Phys. Lett. B 498, 144 (2001). https://doi.org/10.1016/S0370-2693(00)01374-5
  39. S.K. Tiwari, P.K. Srivastava, and C.P. Singh, Phys. Rev. C 85, 014908 (2012). https://doi.org/10.1103/PhysRevC.85.014908
  40. M. Gazdzicki and M.I. Gorenstein, Acta Phys. Polon. B 30, 2705 (1999).
  41. M.I. Gorenstein, M. Gazdzicki, and K.A. Bugaev, Phys. Lett. B 567, 175 (2003). https://doi.org/10.1016/j.physletb.2003.06.043
  42. M. Gazdzicki, M.I. Gorenstein, and P. Seyboth, Acta Phys. Polon. B 42, 307 (2011). https://doi.org/10.5506/APhysPolB.42.307