• Українська
  • English

< | >

Current issue   Ukr. J. Phys. 2014, Vol. 58, N 2, p.171-181
https://doi.org/10.15407/ujpe58.02.0171    Paper

Podolyan O.M., Zaporozhets T.V., Gusak A.M.

Bogdan Khmelnyts’kyi National University of Cherkasy
(81, Shevchenko Blvd., Cherkasy 18031, Ukraine; e-mail: ompodolyan@mail.ru)

Pore Evolution at Reactive Diffusion in Spherical and Cylindrical Nanoparticles

Section: Nanosystems
Original Author's Text: Ukrainian

Abstract: A phenomenological model has been proposed for the description of the pore evolution at the phase formation in spherically and cylindrically symmetric binary systems “core–shell” with different mobilities of components. The dependences of the duration and the efficiency of the pore formation, relative pore stability, and degree of core restoration in the course of pore shrinkage on the initial dimensions of the system, surface tension, thermodynamic gain of formation/decay of a compound, and diffusion mobilities of components are analyzed. The ratio between the thermodynamic reaction gain and the surface tension is shown to be the governing parameter at the transition from the stage of nanoshell formation to that of its shrinkage; namely, it determines which of the regimes–pore formation and shrinkage with or without restoration of the initial components – will take place.

Key words: void, nanoshell, diffusion, vacancies, reaction, Kirkendall effect, Gibbs– Thomson effect, intermediate phase.

References:

  1. F. Aldinger, Acta. Metall. 22, 923 (1974). https://doi.org/10.1016/0001-6160(74)90059-5
  2. Ya.E. Geguzin, Diffusion Zone (Nauka, Moscow, 1979) (in Russian).
  3. Y. Yadong, R.M. Rioux, C.K. Erdonmez, S. Hughes, G.A. Somorjai, and A.P. Alivisatos, Science 304, 711 (2004). https://doi.org/10.1126/science.1096566
  4. H.J. Fan, M. Knez, R. Scholz, D. Hesse, K. Nielsch, M. Zacharias, and U. Gosele, Nano Lett. 7, 993 (2007). https://doi.org/10.1021/nl070026p
  5. C.M. Wang, D.R. Baer, L.E. Thomas, J.E. Amonette, J. Antony, Y. Qiang, and G. Duscher, J. Appl. Phys. 98, 094308 (2005). https://doi.org/10.1063/1.2130890
  6. Y. Yin, C.K. Erdonmez, A. Cabot, S. Hughes, and A.P. Alivisatos, Adv. Funct. Mater. 16, 1389 (2006). https://doi.org/10.1002/adfm.200600256
  7. A. Cabot, V.F. Puntes, E. Shevchenko, Y. Yin, L. Balcells, M.A. Marcus, S.M. Hughes, and A.P. Alivisatos, J. Am. Chem. Soc. 129, 10358 (2007). https://doi.org/10.1021/ja072574a
  8. R. Nakamura, D. Tokozakura, J-G. Lee, H. Mori, and H. Nakajima, Acta Mater. 56, 5276 (2008). https://doi.org/10.1016/j.actamat.2008.07.004
  9. R. Nakamura, G. Matsubayashi, H. Tsuchiya, S. Fujimoto, and H. Nakajima, Acta Mater. 57, 4261 (2009). https://doi.org/10.1016/j.actamat.2009.05.023
  10. G. Glod’an, C. Cserh’ati, I. Beszeda, and D.L. Beke, Appl. Phys. Lett. 97, 113109 (2010). https://doi.org/10.1063/1.3490675
  11. G. Glod’an, C. Cserh’ati, and D.L. Beke, Philos. Mag. 92, 3806 (2012). https://doi.org/10.1080/14786435.2012.687841
  12. K.N. Tu and U. G¨osele, Appl. Phys. Lett. 86, 093111 (2005). https://doi.org/10.1063/1.1873044
  13. A.M. Gusak, T.V. Zaporozhets, K.N. Tu, and U. G¨osele, Philos. Mag. 85, 4445 (2005). https://doi.org/10.1080/14786430500311741
  14. T.V. Zaporozhets, O.M. Podolyan, and A.M. Gusak, Metallofiz. Noveish. Tekhnol. 34, 111 (2012).
  15. A.M. Gusak and K.N. Tu, Acta Mater. 57, 3367 (2009). https://doi.org/10.1016/j.actamat.2009.03.043
  16. T.V. Zaporozhets, A.M. Gusak, and O.N. Podolyan, Usp. Fiz. Metall. 12, 1 (2011). https://doi.org/10.15407/ufm.12.01.001