• Українська
  • English

< | >

Current issue   Ukr. J. Phys. 2014, Vol. 58, N 2, p.163-170
https://doi.org/10.15407/ujpe58.02.0163    Paper

Davidenko N.A., Kuznetsov G.V., Milovanov Yu.S.

Taras Shevchenko National University of Kyiv, Institute of High Technologies
(64, Volodymyrs’ka Str., Kyiv 06001, Ukraine; e-mail: juri_milovanov@yahoo.com)

Cadmium Sulfide-Porous Silicon Nanocomposite Structures

Section: Nanosystems
Original Author's Text: Ukrainian

Abstract: Optimum conditions for the formation of cadmium sulfide nanoparticles in a porous silicon matrix have been determined. The mechanisms of charge transfer in the formed heterostructures and their dependences on the porous layer properties and conditions of CdS nanoparticle synthesis have been studied. The spectral distribution and the intensity of photoluminescence are demonstrated to be governed by the concentration and the size of synthesized CdS nanocrystallites, as well as the efficiency of radiation recombination at deep centers bound with defects.

Key words: porous silicon, CdS nanoparticles.

References:

  1. Ordered Porous Nanostructures and Applications, edited by R.B. Wehrspohn (Springer, New York, 2005).
  2. T. Serdiuk, V.A. Skryshevsky, I.I. Ivanov, and V.Lysenko, Mater. Lett. 65, 2514 (2011). https://doi.org/10.1016/j.matlet.2011.05.033
  3. E.B. Kaganovich, E.G. Manoilov, I.R. Basylyuk, and S.V. Svechnikov, Semiconductors 37, 353 (2003). https://doi.org/10.1134/1.1561529
  4. A. Gokarna, N.R. Pavaskar, S.D. Sathaye, V. Ganesan, and S.V. Bhoraskar, J. Appl. Phys. 92, 2118 (2002). https://doi.org/10.1063/1.1483381
  5. V. Lysenko, V. Onyskevych, O. Marty, V.A. Skryshevsky, Y. Chevolot, and C. Bru-Chevallier, Appl.Phys. Lett. 92, 251910 (2008). https://doi.org/10.1063/1.2948955
  6. A.Y Karlach, G.V. Kuznetsov, S.V. Litvinenko, Y.S. Milovanov, and V.A. Skryshevsky, Semiconductors 44, 1342 (2010). https://doi.org/10.1134/S1063782610100179
  7. N.V. Bondar and M.S. Brodyn, Ukr. J. Phys. 54, 130 (2009).
  8. N.V Deshmukh., T.M. Bhave, A.S. Ethiraj, S.R. Sainkar, V. Ganesan, S.V. Bhoraskar, and S.K. Kulkarni, Nanotechnology 12, 290 (2001). https://doi.org/10.1088/0957-4484/12/3/316
  9. M.M. Vorontsova, N.V. Malushin, V.M. Skobeeva, and V.A. Smyntyna, Fotoelektronika 11, 104 (2002).
  10. G.S. Khrypunov, V.R. Kopach, A.V. Meriuts, R.V. Zaitsev, M.V. Kirichenko, and N.V. Deyneko, Semiconductors 45, 1564 (2011). https://doi.org/10.1134/S1063782611110133
  11. V.A. Skryshevsky, Appl. Surf. Sci. 157, 145 (2000). https://doi.org/10.1016/S0169-4332(99)00560-7
  12. B.M. Bulakh, N.E. Korsunska, L.Yu. Khomenkova, T.R. Stara, and M.K. Sheinkman, Semiconductors 40, 614 (2006). https://doi.org/10.1134/S1063782606050150
  13. A. Korcala, W. Ba la, A. Bratkowski, P. Borowski, and Z. Lukasiak, Opt. Mater. 28, 143 (2006). https://doi.org/10.1016/j.optmat.2004.10.036
  14. V.A. Skryshevsky, A. Laugier, V.I. Strikha, and V.A. Vikulov, Mater. Sci. Eng. B 40, 54 (1996). https://doi.org/10.1016/0921-5107(96)01572-3
  15. G.A. Ilchuk, V.V. Kusnezh, V.Yu. Rud, Yu.V. Rud, P.Yo. Shapowal, and R.Yu. Petrus, Semiconductors 44, 335 (2010).
  16. V.A. Vikulov, V.I. Strikha, V.A. Skryshevsky, S.S. Kilchitskaya, E. Souteyrand, and J.R. Martin, J. Phys. D 33, 1957 (2000). https://doi.org/10.1088/0022-3727/33/16/304
  17. V. Strikha, V. Skryshevsky, V. Polishchuk, E. Souteyrand, and J.R. Martin, J. Porous Mater. 7, 111 (2000). https://doi.org/10.1023/A:1009634720436
  18. A.A. Evtukh, Ukr. J. Phys. 54, 308 (2009).
  19. V.B. Lazarev, V.G. Krasov, and I.S. Shaplygin, Electric Conductivity of Oxide Systems and Film Structures (Nauka, Moscow, 1979) (in Russian).
  20. I.V. Gavrilchenko, S.A. Diachenko, G.V. Kuznetsov, V.A. Skryshevsky, and Y.A. Pervak, Visn. Kyiv. Univ. Ser. Fiz. Mat. Nauky 8, 41 (2005).
  21. E.A. Tutov, A.Yu. Andryukov, and E.N. Bormontov, Semiconductors 35, 850 (2001). https://doi.org/10.1134/1.1385718
  22. V.I. Gavrilenko, A.M. Grekhov, D.V. Korbutyak, and V.G. Litovchenko, Optical Properties of Semiconductors: A Handbook (Naukova Dumka, Kiev, 1987) (in Russian).
  23. P. Zhang, P.S. Kim, and T.K. Sham, J. Appl. Phys. 91, 6038 (2002). https://doi.org/10.1063/1.1461888
  24. L.E. Brus, Al. Efros, and T. Itoh, J. Lumin. 76, 1 (1996).
  25. Yu.Yu. Bacherikov, I.Z. Indutnyi, O.B. Okhrimenko, S.V. Optasyuk, P.Ye. Shepeliavyi, and V.V. Ponamarenko, Semiconductors 45, 1235 (2011). https://doi.org/10.1134/S1063782611090028
  26. G. Ma, S. Tang, W. Sun, Z. Shen, W. Huang, and J. Shi, Phys. Lett. A 299,581 (2002). https://doi.org/10.1016/S0375-9601(02)00680-1
  27. Y. Kanemitsua and A. Ishizumi, J. Lumin. 119–120, 161 (2006). https://doi.org/10.1016/j.jlumin.2005.12.026
  28. V.N. Bondarev and P.V. Pikhitsa, Fiz. Tverd. Tela 43, 2142 (2001).