• Українська
  • English

< | >

Current issue   Ukr. J. Phys. 2014, Vol. 58, N 2, p.151-162
https://doi.org/10.15407/ujpe58.02.0151    Paper

Kornienko M.E., Sheiko N.L., Kornienko O.M., Nikolaienko T.Yu.

Taras Shevchenko National University of Kyiv, Faculty of Physics
(64, Volodymyrs’ka Str., Kyiv 01601, Ukraine; e-mail: nikkorn@univ.kiev.ua)

Discrete Properties of Quasiliquid Water Film in the Ice Premelting Range. 1. Temperature Dependences of Water Nanofilm Thickness and Viscoelastic Properties of Polycrystalline Ice

Section: Nanosystems
Original Author's Text: Ukrainian

Abstract: Peculiarities in the temperature dependences of the properties of quasiliquid water films on the surface of ice crystallites have been studied experimentally under ice premelting conditions. Viscoelastic properties of polycrystalline ice in the temperature interval from −60 to 20 °C have been analyzed. Peculiarities in the temperature dependences of the water nanolayer thickness, L(T), and the imaginary part of the shear modulus (modulus of viscous losses), G2(T), are found. Quasiequidistant temperature variations of the viscous loss modulus are revealed for the first time. A comparison of the results obtained with literature data on the temperature dependences L(T), the density of water in nanolayers, and the ice surface roughness allowed us to associate the observed features with a discrete cluster structure of quasiliquid water nanofilms. Temperature intervals of the enhanced stability for a cluster structure of water nanofilms are revealed, which manifest themselves in the form of extrema in viscoelastic ice parameters in the premelting interval. The interrelation between the phenomena of ice premelting and temperature discretization at the melting in ice nanolayers is considered for the first time.

Key words: viscoelastic properties, premelting, quasiliquid.

References:

  1. V.F. Petrenko and R.W. Whitworth, Physics of Ice (Oxford Univ. Press, London, 1999).
  2. Yu.I. Golovin, A.A. Shibkov, and O.V. Shishkina, Fiz. Tverd. Tela 42(7), 1250 (2000).
  3. T. Bryk and A.D.J. Haymet, J. Chem.Phys. 117, 10258 (2002). https://doi.org/10.1063/1.1519538
  4. I.A. Ryzhkin and V.F. Petrenko, Zh. Eksp. Teor. Fiz. 135, 77 (2009).
  5. G.S.Bordonskii and S.D.Krylov, Pis'ma Zh. Tekhn. Fiz. 35, No. 7, 80 (2009).
  6. G.S. Bordonskii, A.A. Gurulev, and S.D. Krylov, Pis'ma Zh. Tekhn. Fiz. 35, No. 22, 46 (2009).
  7. G.D. Koposov and A.V. Tyagunin, Pis'ma Zh. Eksp. Teor. Fiz. 94, 406 (2011).
  8. M.E. Kornienko, Ukr. Fiz. Zh. 46, 546 (2001).
  9. M.E. Kornienko, Ukr. Fiz. Zh. 47, 361 (2002).
  10. N.E. Kornienko, V.I. Malyi, G.V. Ponezha, and E.A. Ponezha, Dokl. AN UkrSSR, Ser. A, No. 4, 65 (1983).
  11. N.E. Kornienko, V.I. Malyi, G.V. Ponezha, and E.A. Ponezha, Opt. Spektrosk. 60, 1171 (1986).
  12. N.E. Kornienko, Kvant. Elektron. 12, 1595 (1985).
  13. M.E. Kornienko, Ukr. Fiz. Zh. 47, 435 (2002).
  14. N.E. Kornienko, Fiz. Zhivogo 16, No. 1, 5 (2008).
  15. M.E. Kornienko, Visn. Kyiv. Univ. Ser. Fiz. Mat. Nauky No. 3, 489 (2006).
  16. N.E. Kornienko, N.P. Kulish, S.A. Alekseev, O.P. Dmitrenko, and E.L. Pavlenko, Opt. Spectrosc. 109, 742 (2010). https://doi.org/10.1134/S0030400X10110147
  17. N.E. Kornienko, V.I. Grigoruk, A.N. Kornienko, and S.A. Alexeev, in Abstracts of the 2nd International Scientific Conference "Nanostructure materials–2010: Belarus–Russia–Ukraine Nano-2010" (Ukraine, Kiev, 2010), p. 98 (in Russian).
  18. N.E. Kornienko, V.I. Grigoruk, and A.N. Kornienko, Vestn. Tambov. Univ. Ser. Estestv. Tekhn. Nauki 15, 953 (2010).
  19. N.E. Kornienko, V.I. Grigoruk, and A.N. Kornienko, in Proceedings of the International Scientific Conference "Challenging Problems in Solid-State Physics", 18–21 October 2011, Minsk (Minsk,2011), Vol. 1, p. 26 (in Russian).
  20. M. Elbaum and J. S. Wettlaufer, Phys. Rev. E 48, 3180 (1993). https://doi.org/10.1103/PhysRevE.48.3180
  21. J.G. Dash, A.W. Rempel, and J.S. Wettlaufer, Rev. Mod. Phys. 78, 695 (2006). https://doi.org/10.1103/RevModPhys.78.695
  22. S. Engemann, H. Reichert, H. Dosch, J. Bilgram, V. Honkimaki, and A. Snigirev, Phys. Rev. Lett. 92, 205701 (2004). https://doi.org/10.1103/PhysRevLett.92.205701
  23. S.Ch. Engemann, Ph.D. thesis (Max-Planck-Institut fur Metallforschung, Stuttgart, 2005).
  24. A. Doppenschmidt and H.-J. Butt, Langmuir 16, 6709 (2000). https://doi.org/10.1021/la990799w
  25. E. Prouzet, J.-B. Brubach, and P. Roy, J. Phys. Chem. B 114, 8081 (2010). https://doi.org/10.1021/jp101176v
  26. M.E. Kornienko, Visn. Kyiv. Univ. Ser. Fiz. Mat. Nauky No. 4, 466 (2004).
  27. M.E. Kornienko, Visn. Kyiv. Univ. Ser. Fiz. Mat. Nauky No. 3, 520 (2005).
  28. S.S. Xantheas and T.H. Dunning, J. Chem. Phys. 99, 8774 (1993). https://doi.org/10.1063/1.465599
  29. H. Cybulski and J. Sadlej, Chem. Phys. 342, 163 (2007). https://doi.org/10.1016/j.chemphys.2007.09.058
  30. M. Losada and S. Leutwyler, J. Chem. Phys. 117, 2003 (2002). https://doi.org/10.1063/1.1487371
  31. H.M. Lee, S.B. Suh, J.Y. Lee, P. Tarakeshwar, and K.S. Kim, J. Chem. Phys. 112, 9759 (2000). https://doi.org/10.1063/1.481613
  32. G.S. Fanourgakis, E. Apra, W.A. de Jong, and S.S. Xantheas, J. Chem. Phys. 122, 134304 (2005). https://doi.org/10.1063/1.1864892
  33. P. Qian, Li-nan Lu, W. Song, and Zh.-zhi Yang, Theor. Chem. Acc. 123, 487 (2009). https://doi.org/10.1007/s00214-009-0569-1
  34. L.A. Bulavin, O.Yu. Aktan, Yu.F. Zabashta, T.Yu. Nikolaenko, N.L. Sheiko, Tech. Phys. Lett. 36, Issue 3, 279 (2010). https://doi.org/10.1134/S1063785010030235
  35. N.L. Sheiko, O.Yu. Aktan, Yu.F. Zabashta, and T.Yu. Nikolayenko, Ukr. Fiz. Zh. 55, 299 (2010).
  36. I.M. Neklyudov, A.A. Parkhomenko, I.N. Laptev, V.V. Krasil'nikov, and S.E. Savotchenko, in Proceedings of the 51st International Conference "Challenging Problems of Strength" (Kharkov, 2001), p. 3 (in Russian).
  37. Ph. Buffat and J.P. Borel, Phys. Rev. A 13, 2287 (1976). https://doi.org/10.1103/PhysRevA.13.2287
  38. X. Wei, P.B. Miranda, and Y.R. Shen, Phys. Rev. Lett. 86, 1554 (2001). https://doi.org/10.1103/PhysRevLett.86.1554
  39. X. Wei, P.B. Miranda, Ch. Zhang, and Y.R. Shen, Phys. Rev. B 66, 085401 (2002). https://doi.org/10.1016/j.jmatprotec.2008.08.022