• Українська
  • English

< | >

Current issue   Ukr. J. Phys. 2014, Vol. 58, N 2, p.126-134
https://doi.org/10.15407/ujpe58.02.0126    Paper

Olikh O.Ya.

Taras Shevchenko National University of Kyiv, Faculty of Physics
(64, Volodymyrs’ka Str., Kyiv 01601, Ukraine; e-mail: olikh@univ.kiev.ua)

Features of Charge Transport in Mo/n-Si Structures with a Schottky Barrier

Section: Solid matter
Original Author's Text: Ukrainian

Abstract: Forward and reverse current-voltage characteristics of Mo/n-Si Schottky barrier structures have been studied experimentally in the temperature range 130 ÷ 330 K. The Schottky barrier height is found to increase and the ideality factor to decrease, as the temperature grows. The obtained results are analyzed in the framework of a non-uniform contact model. The average value and the standard deviation of a Schottky barrier height are determined to be 0.872 and 0.099 V, respectively, at T = 130 ÷ 220 K and 0.656 and 0.036 V, respectively, at T = 230 ÷ 330 K. Thermionic emission over the non-uniform barrier and tunneling are shown to be the dominant processes of charge transfer at a reverse bias voltage.

Key words: inhomogeneous Schottky barrier, thermionic emission, silicon.

References:

  1. J.P. Colinge and C.A. Colinge, Physics of Semiconductor Device (Kluwer, Dordrecht, 2002).
  2. V.I. Strikha, Contact Phenomena in Semiconductors (Vyshcha Shkola, Kyiv, 1982) (in Russian).
  3. E. Arslan, S. Altindal, S. Ozcelik, and E. Ozbay, J. Appl. Phys. 105, 023705 (2009). https://doi.org/10.1063/1.3068202
  4. D. Donoval, A. Chvala, R. Sramaty, J. Kovac, J.-F. Carlin, N. Grandjean, G. Pozzovivo, J. Kuzmik, D. Pogany, G. Strasser, and P. Kordos, Appl. Phys. Lett. 96, 223501 (2010). https://doi.org/10.1063/1.3442486
  5. S. Huang et al., Semicond. Sci. Technol. 24, 055005 (2009). https://doi.org/10.1088/0268-1242/24/5/055005
  6. V.V. Evstropov, Yu.V. Zhilyaev, M. Dzhumaeva, and N. Nazarov, Fiz. Tekh. Poluprovodn. 31, 152 (1997).
  7. C.H. Lee and K.S. Lim, Appl. Phys. Lett. 75, 569 (1999). https://doi.org/10.1063/1.124444
  8. D.M. Sathaiyaa and S. Karmalkar, J. Appl. Phys. 99, 093701 (2006). https://doi.org/10.1063/1.2191620
  9. J.W.P. Hsu, M.J. Manfra, R.J. Molnar, B. Heying, and J.S. Speck, Appl. Phys. Lett. 81, 79 (2002). https://doi.org/10.1063/1.1490147
  10. J.H. Werner and H.H. Guttler, J. Appl. Phys. 69, 1522 (1991). https://doi.org/10.1063/1.347243
  11. J.P. Sullivan, R.T.Tung, M.R. Pinto, and W.R. Graham, J. Appl. Phys. 70, 7403 (1991). https://doi.org/10.1063/1.349737
  12. R.T. Tung, Phys. Rev. B 45, 13509 (1992). https://doi.org/10.1103/PhysRevB.45.13509
  13. K. Sarpatwari, S.E. Mohney, and O.O. Awadelkarim, J. Appl. Phys. 109, 014510 (2011). https://doi.org/10.1063/1.3530868
  14. M. Biber, O. Gullu, S. Forment, R.L. Van Meirhaeghe, and A. Turut, Semicond. Sci. Technol. 21, 1 (2006). https://doi.org/10.1088/0268-1242/21/1/001
  15. I. Tascioglu, U. Aydemir, and S. Altindal, J. Appl. Phys. 108, 064506 (2010). https://doi.org/10.1063/1.3468376
  16. N. Yildirim, K. Ejderha, and A. Turut, J. Appl. Phys. 108, 114506 (2010). https://doi.org/10.1063/1.3517810
  17. M. Mamor, J. Phys. Condens. Matter 21, 335802 (2009). https://doi.org/10.1088/0953-8984/21/33/335802
  18. F. Iucolano, F. Roccaforte, F. Giannazzo, and V. Raineri, J. Appl. Phys. 102, 113701 (2007). https://doi.org/10.1063/1.2817647
  19. F. Iucolano, F. Roccaforte, F. Giannazzo, and V. Raineri, Appl. Phys. Lett. 90, 092119 (2007). https://doi.org/10.1063/1.2710770
  20. S.K. Cheung and N.W. Cheung, Appl. Phys. Lett. 49, 85 (1986). https://doi.org/10.1063/1.97359
  21. D. Gromov and V. Pugachevich, Appl. Phys. A 59, 331 (1994). https://doi.org/10.1007/BF00348239
  22. D.K. Schroder, Semiconductor Material and Device Characterization (Wiley, Hoboken, NJ, 2006).
  23. S. Zhu, R.L. Van Meirhaeghe, C. Detavernier,G.-P. Ru, B.-Z. Li, and F. Cardon, Solid State Commun. 112, 611 (1999). https://doi.org/10.1016/S0038-1098(99)00404-4
  24. M.O. Aboelfotoh, J. Appl. Phys. 66, 262 (1989). https://doi.org/10.1063/1.343867
  25. V.G. Bozhkov and A.V. Shmargunov, J. Appl. Phys. 109, 113718 (2011). https://doi.org/10.1063/1.3587233
  26. T. Markvart and L. Castaner, Practical Handbook of Photovoltaics. Fundamentals and Application (Elsevier, New York, 2003).
  27. R.F. Schmitsdorf, T.U. Kampen, and W. Monch, J. Vac. Sci. Technol. B 15, 1221 (1997). https://doi.org/10.1116/1.589442
  28. T.P. Chen, T.C. Lee, C.C. Ling, C.D. Beling, and S. Fung, Solid State Electron. 36, 949 (1993). https://doi.org/10.1016/0038-1101(93)90109-4
  29. Y.-L. Jiang, G.-P. Rua, F. Lu, X.-P. Qu, B.-Z. Li, and S. Yang, J. Appl. Phys. 93, 866 (2003). https://doi.org/10.1063/1.1527714
  30. J.M. Andrews and M.P. Lepselter, Solid State Electron. 13, 1011 (1970). https://doi.org/10.1016/0038-1101(70)90098-5