• Українська
  • English

< | >

Current issue   Ukr. J. Phys. 2014, Vol. 58, N 2, p.122-125
https://doi.org/10.15407/ujpe58.02.0122    Paper

Gnatovskyy O.V.1, Negriyko A.M.1, Gnatovskyy V.O.2, Sidorenko A.V.3

1 Institute of Physics, Nat. Acad. of Sci. of Ukraine
(46, Nauky Ave., Kyiv 03680, Ukraine; e-mail: vgnatovskyy@ukr.net)
2 Taras Shevchenko National University of Kyiv
(64, Volodymyrs’ka Str., Kyiv 01601, Ukraine)
3 State enterprise “Design Institute Ukrmetrotunelproekt”
(21, Vorovs’kyi Str, Kyiv 01054, Ukraine)

Cross-Correlation Method for the Formation of Laser Energy Fields with Complex Distributions

Section: Optics, lasers, and quantum electronics
Original Author's Text: Ukrainian

Abstract: A new method for the formation of complex spatial distributions of the laser energy over the surface of a flat target is proposed. Its peculiarity consists in that the required phase structure of the laser beam is formed in two stages. After the Fourier transformation, this beam generates the required energy distribution. The method is intended to be used in the optical tweezers probe. It satisfies the main criteria of applicability. In particular, the method provides a small divergence of the beam; it is stable with respect to phase distortions in the optical path of the probe and adapted to dynamic changes in the field energy distribution by means of controllable phase transparencies.

Key words: diffraction field, controllable correlation function, controllable phase transparencies.

References:

  1. D. Cojoc et al., Microelectron. Eng. 61–62, 963 (2002). https://doi.org/10.1016/S0167-9317(02)00426-4
  2. V.G. Shvedov, A.V. Rode, Y.V. Izdebskaya, A.S. Desyatnikov, W. Krolikowski, and Y.S. Kivshar, Phys. Rev. Lett. 105, 118 (2010). https://doi.org/10.1103/PhysRevLett.105.118103
  3. G.W. Stroke, R. Restrick, A. Funkhouser, and D. Brumm, Phys. Lett. 18, 274 (1965). https://doi.org/10.1016/0031-9163(65)90332-X
  4. A.V. Lugt, IEEE Trans. Inform. Theory 10, 139 (1964). https://doi.org/10.1109/TIT.1964.1053650
  5. E.G. Abramochkin and V.G. Volostnikov, Vestnik Samarsk. Gos. Univ. Special issue, 71 (2002).
  6. A.V. Gnatovskyy, A.P. Loginov, N.V. Medved', M.V. Nikolaev, and M.T. Shpak, Kvant. Elektron. 6, 331 (1979).
  7. A.V. Gnatovskyy, N.V. Medved', and L.K. Yarovoi, Tekhn. Spets. Naznach. 1, 3 (2001).
  8. P.V. Yezhov, O.A. Ilyin, T.N. Smirnova, and E.A. Tikhonov, Kvant. Elektron. 33, 559 (2003). https://doi.org/10.1070/QE2003v033n06ABEH002457
  9. V.I. Bezrodnyi, V.A. Gnatovskyy, P.V. Yezhov, A.M. Negriyko, and L.D. Pryadko, in Proceedings of the 19th International School-Seminar "The Spectroscopy of Molecules and Crystals" (Beregovoe, Ukraine, 2009).