• Українська
  • English

< | >

Current issue   Ukr. J. Phys. 2014, Vol. 58, N 2, p.109-115
https://doi.org/10.15407/ujpe58.02.0109    Paper

Feoktistov A.I., Kupryashkin V.T., Sidorenko L.P., Lashko V.A.

Institute for Nuclear Research, Nat. Acad. of Sci. of Ukraine
(47, Prosp. Nauky, Kyiv 03680, Ukraine; e-mail: kupryashkinvt@yahoo.com)

Energy Distribution of Electrons in the “Zero-Energy Peak” Induced by a Radioactive Decay or a Target Bom-bardment with Charged Particles

Section: Nuclei and nuclear reactions
Original Author's Text: Ukrainian

Abstract: The energy distribution of near-zero electrons (e0-electrons) emitting from the surface of radioactive sources or from the surface bombardment with α- or β-particles is studied. The integrated spectrum N(E) of e0-electrons with the energy E = (0 ÷ 24) eV is determined from the measurements of the delay curve by applying a retarding potential between the source (or the target) and the detector of e0-electrons. The calculated distribution of e0-electrons is shown to be in good agreement with the theoretical one obtained in the framework of the shakeoff model, i.e. when the perturbation by an electric charge arising near the surface and it shakes off weakly bound electrons from the surface.

Key words: reflection, passing through, near zero electrons (e0-electrons), shakeoff effect, microchannel plates (MCP).


  1. H.-B. Braun, Adv. in Phys. 61, 1 (2012), http:// www.tandfonline.com/doi/abs/10.1080/00018732.2012. 663070
  2. A. Wachowiak, J. Wiebe, M. Bode, O. Pietzsch, M. Morgenstern, and R. Wiesendanger, Science 298, 577 (2002), http://www.sciencemag.org/cgi/content/abstract/298/5593/577. https://doi.org/10.1126/science.1075302
  3. A. Hubert and R. Sch¨afer, Magnetic Domains: the Analysis of Magnetic Microstructures (Springer, Berlin, 1998).
  4. S.-K. Kim, K.-S. Lee, Y.-S. Yu, and Y.-S. Choi, Appl. Phys. Lett. 92, 022509 (2008). https://doi.org/10.1063/1.2807274
  5. Y.-S. Yu, H. Jung, K.-S. Lee, P. Fischer, and S.-K. Kim, Appl. Phys. Lett. 98, 052507 (2011). https://doi.org/10.1063/1.3551524
  6. Y.B. Gaididei, V.P. Kravchuk, D.D. Sheka, and F.G. Mertens, Low Temp. Phys. 34, 528 (2008). https://doi.org/10.1063/1.2957013
  7. V.P. Kravchuk, Y. Gaididei, and D.D. Sheka, Phys. Rev. B 80, 100405 (2009). https://doi.org/10.1103/PhysRevB.80.100405
  8. Y. Gaididei, V.P. Kravchuk, D.D. Sheka, and F.G. Mertens, Phys. Rev. B 81, 094431 (2010). https://doi.org/10.1103/PhysRevB.81.094431
  9. T. Okuno, K. Shigeto, T. Ono, K. Mibu, and T. Shinjo, J. Magn. Magn. Mater. 240, 1 (2002). https://doi.org/10.1016/S0304-8853(01)00708-9
  10. A. Thiaville, J.M. Garcia, R. Dittrich, J. Miltat, and T. Schrefl, Phys. Rev. B 67, 094410 (2003). https://doi.org/10.1103/PhysRevB.67.094410
  11. V. Kravchuk and D. Sheka, Phys. of Sol. State 49, 1923 (2007). https://doi.org/10.1134/S1063783407100186
  12. L. Vila, M. Darques, A. Encinas, U. Ebels, J.-M. George, G. Faini, A. Thiaville, and L. Piraux, Phys. Rev. B 79, 172410 (2009). https://doi.org/10.1103/PhysRevB.79.172410
  13. R. Wang and X. Dong, Appl. Phys. Lett. 100, 082402 (2012). https://doi.org/10.1063/1.3687909
  14. M.-W. Yoo, J. Lee, and S.-K. Kim, Appl. Phys. Lett. 100, 172413 (2012). https://doi.org/10.1063/1.4705690
  15. M. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (Dover, New York, 1964).
  16. J. Kevorkian and J. Cole, Perturbation Methods in Applied Mathematics (Springer, Berlin, 1981).
  17. A. Nayfeh, Problems in Perturbation (Wiley, New York, 1985).
  18. A. Nayfeh, Perturbation Methods (Wiley, New York, 2008).
  19. The Object Oriented MicroMagnetic Framework, note developed by M.J. Donahue and D. Porter mainly, from NIST. We used the 3D version of the 1.2α4 release, http://math.nist.gov/oommf/.
  20. S. Petit-Watelot, J.-V. Kim, A. Ruotolo, R.M. Otxoa, K. Bouzehouane, J. Grollier, A. Vansteenkiste, B. Van de Wiele, V. Cros, and T. Devolder, Nat. Phys. 8, 682 (2012).