• Українська
  • English

< | >

Current issue   Ukr. J. Phys. 2014, Vol. 58, N 1, p.77-90
https://doi.org/10.15407/ujpe58.01.0077    Paper

Lysenko V., Lozovski V., Spivak M.

1 V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine
(45, Prosp. Nauky, Kyiv 03028, Ukraine)
2 Institute of High Technologies, Taras Shevchenko National University of Kyiv
(64, Volodymyrs’ka Str., Kyiv 01601, Ukraine)
3 D.K. Zabolotnyi Institute of Microbiology and Virology, Nat. Acad. of Sci. of Ukraine
(154, Academician Zabolotnyi Str., Kyiv 13143, Ukraine)

Nanophysics and Antiviral Therapy

Section: Nanosystems
Original Author's Text: Ukrainian

Abstract: A new mechanism of interaction between viruses and nanoparticles is proposed. The mechanism is based on the local-field enhancement effect inherent only in nano-objects and can manifest itself in nanoparticle–virus systems. The basic idea consists in vacuum fluctuations that are always present in any physical system. This mechanism is universal and does not depend on the details of nanoparticle and virus structures, which was confirmed by numerous experiments carried out by us and in other scientific groups. A new method of purification of biofluids from nano-objects such as nanoparticles and viruses is also discussed. The method is based on a selective interaction between nano-objects and either a nanostructured surface, along which a surface plasmon-polariton propagates, or a system of nanothreads, on which a local plasmon-polariton is excited. On the basis of the method proposed for weakening the virus activity due to the action of a suspension of nanoparticles, a new effective way for the production of human leukocytic interferon has been developed and verified experimentally.

Key words: plasmon-polariton, nanoparticle–virus systems.


  1. H.-W. Fink and Ch. Sch¨onenberger, Nature 398, 407 (1999).  https://doi.org/10.1038/18855
  2. D. Porath, A. Bezryadin, S. de Vries, and C. Dekker, Nature 403, 635 (2000).  https://doi.org/10.1038/35001029
  3. O.V. Salata, J. Nanobiotechnol. 2, 3 (2004).
  4. H.-E. Schaefer, Nanoscience. The Science of the Small in Physics, Engineering, Chemistry, Biology and Medicine (Springer, Berlin, 2010).
  5. Yu.A. Berlin, A.L. Burin, and M.A. Ratner, Superlattices Microstruct. 28, 241 (2000).  https://doi.org/10.1006/spmi.2000.0915
  6. S. Brasselet, Adv. Opt. Photon. 3, 205 (2011).  https://doi.org/10.1364/AOP.3.000205
  7. J.P. Jagtap, T.H. Jadhav, and D. Utpal, Scient. J. Crop. Sci. 1, 9 (2012).
  8. T.A. Delchar, Physics in Medical Diagnostics (Springer, Berlin, 1997).
  9. Surface Polaritons: Electromagnetic Waves at Surfaces and Interfaces, edited by V.M. Agranovich and D.L. Mills (Amsterdam, North-Holland, 1982).
  10. J. Davies, Nanobiology 3, 5 (1994).
  11. J. Homola, Anal. Bioanal. Chem. 377, 528 (2003).  https://doi.org/10.1007/s00216-003-2101-0
  12. N.F. Starodub, T.L. Dibrova, Yu.M. Shyrshov, and K.V. Kostyukevich, Ukr. Biokim. Zh. 71, 33 (1999).
  13. Optical Sensors. Industrial Enviromental and Diagnostic Applications, edited by R. Narayanaswamy and O.S. Wolfbeis (Springer, Berlin, 2004).
  14. B. Della Ventura, L. Schiavo, C. Altucci, R. Esposito, and R. Velotta, Biomed. Opt. Express 2, 3223 (2011).  https://doi.org/10.1364/BOE.2.003223
  15. C. Chen, J. Peng, H. Xia, Q. Wu, L. Zeng, H. Xu, H. Tang, Z. Zhang, X. Zhu, D. Pang, and Y. Li, Nanotechnology 21, 095101 (2010).  https://doi.org/10.1088/0957-4484/21/9/095101
  16. C.-C. Youa, A. Chompoosora, and V.M. Rotello, Nano Today 2, 34 (2007).  https://doi.org/10.1016/S1748-0132(07)70085-3
  17. G.A. Silva, Nature Reviews Neuroscience 7, 65 (2006).  https://doi.org/10.1038/nrn1827
  18. D.A. Giljohann, D.S. Seferos, W.L. Daniel, M.D. Massich,P.C. Patel, and C.A. Mirkin, Angew. Chem. 49, 3280 (2010).  https://doi.org/10.1002/anie.200904359
  19. Nanoparticles in Biology and Medicine, edited by M. Soloviev (Humana Press, New York, 2012).
  20. L. Zhang, F.X. Gu, J.M. Chan, A.Z. Wang, R.S. Langer, and O.C. Farokhzad, Clin. Pharmacol. Ther. 83, 761 (2008).  https://doi.org/10.1038/sj.clpt.6100400
  21. M. Singh, S. Singh, S. Prasad, and I.S. Gamhir, Digest J. Nanomater. Biostruct. 3, 115 (2008).
  22. J.M. Provenzale and G.A. Silva, Am. J. Neuroradiol. 30, 1293 (2009).  https://doi.org/10.3174/ajnr.A1590
  23. A.Z. Wang, F. Gu, L. Zhang, J.M. Chan, A. Radovich-Moreno, M.R. Shaikh, and O.C. Farokhzad, Expert Opin. Biol. Ther. 8, 1063 (2008).  https://doi.org/10.1517/14712598.8.8.1063
  24. I.L. Medintz1, H.T. Uyeda, E.R. Goldman, and H. Mattoussi, Nature Mater. 4, 435 (2005).
  25. B.H. Bairamov, V.V. Toporov, F.B. Bayramov, M. Petukhov, E. Glazunov, A.B. Shchegolev, Y. Li, D. Ramadurai, P. Shi, M. Dutta, M.A. Stroscio, and G. Irmer, Mol. J. Phys. Sci. 5, 320 (2006).
  26. W.H. De Jong and P.J.A. Borm, Int. J. Nanomed. 3, 133 (2008).  https://doi.org/10.2147/IJN.S596
  27. J. Li, X. Ni, and K.W. Leong, J. Biomed. Mater. Res. A 65, 196 (2003).  https://doi.org/10.1002/jbm.a.10444
  28. A. Blanco, K. Kostarelos, and M. Prato, Curr. Opin. Chem. Biol. 9, 674 (2005).  https://doi.org/10.1016/j.cbpa.2005.10.005
  29. N.A. Mazurkova, Y.E. Spitsyna, N.V. Shikina, Z.R. Ismagilov, S.N. Zagrebel'nyi, and E.I. Ryabchikova, Ross. Nanotekhnol. 5, 417 (2010).  https://doi.org/10.1134/S1995078010050174
  30. Y. Fujimori, T. Sato, T. Hayata, T. Nagao, M. Nakayama, T. Nakayama, R. Sugamata, and K. Suzuki, Appl. Environ. Microbiol. 78, 951 (2012).  https://doi.org/10.1128/AEM.06284-11
  31. I.O. Shmarakov, M.M. Marchenko, and M.Ya. Spivak, Basic Virology (Chernivtsi Nat. Univ., Chernivtsi, 2011) (in Ukrainian).
  32. E.V. Koonin, T.G. Senkevich, and V.V. Dolja, Biol. Direct. 1, 29 (2006).  https://doi.org/10.1186/1745-6150-1-29
  33. S.J. Flint, I.W. Enquist, R.M. Krug, V.R. Racaniello, and A.M. Skalka, Principles of Virology. Molecular biology, Pathogenetics, and Control (ASM Press, Washington, DC, 1999).
  34. W.H. Roos, R. Bruinsma, and G.J.L. Wuite, Nature Phys. 6, 733 (2010).
  35. P. Wild, Meth. Cell Biol. 88, 497 (2008).  https://doi.org/10.1016/S0091-679X(08)00425-1
  36. Ch. Girard and A. Dereux, Rep. Prog. Phys. 59, 657 (1999).  https://doi.org/10.1088/0034-4885/59/5/002
  37. A. Lewis, H. Taha, A. Strinkovski, A. Manevich, A. Khatchatouriants, R. Dekhter, and E. Ammanann, Nature Biotech. 21, 1378 (2003).  https://doi.org/10.1038/nbt898
  38. E. Betzig, A. Lewis, A. Harootunian, M. Isaacson, and E. Krarschmer, Biophys. J. 49, 269 (1986).  https://doi.org/10.1016/S0006-3495(86)83640-2
  39. B. Hecht, B. Sick, U.P. Wild, V. Deckert, R. Zenobi, O.J.F. Martin, and D.W. Pohl, J. Chem. Phys. 112, 7761 (2000).  https://doi.org/10.1063/1.481382
  40. V.Z. Lozovski, J. Beermann, and S.I. Bozhevolnyi, Phys. Rev. B 75, 045438 (2007).  https://doi.org/10.1103/PhysRevB.75.045438
  41. A. Zybin, Y.A. Kuritsyn, E.L. Gurevich, V.V. Temchura, K. Uberla, and K. Niemax, Plasmonics ¨ 5, 31 (2010).  https://doi.org/10.1007/s11468-009-9111-5
  42. S. Wang, X. Shan, U. Patel, X. Huang, J. Lu, J. Li, and N. Tao, Proc. Nat. Acad. Sci. USA 107, 16028 (2010).  https://doi.org/10.1073/pnas.1005264107
  43. V. Lozovski, J Comput. Theor. Nanosci. 9, 859 (2012).  https://doi.org/10.1166/jctn.2012.2107
  44. Ch. Girard, Ch. Joachim, and S. Gauthier, Rep. Prog. Phys. 63, 893 (2000).  https://doi.org/10.1088/0034-4885/63/6/202
  45. M. Xiao, S. Bozhevolnyi, and O. Keller, Appl. Phys. A 62, 115 (1996).
  46. C.-Z. Wu, X.-B. Mao, Z.-F. Xu, and H.-N. Ye, Optoelectr. Lett. 3, 289 (2007).  https://doi.org/10.1007/s11801-007-6091-6
  47. V. Lozovski, J. Comput. Theor. Nanosci. 7, 2077 (2010).  https://doi.org/10.1166/jctn.2010.1588
  48. V. Lozovski and V. Piatnytsia, in Proceedings of the International Conference of Young Scientists on Modern Problems of Theoretical Physocs (Bogolubov Inst. Theor. Phys. of the NAS of Ukraine, Kyiv, 2011), p. 30.
  49. O. Keller, Phys. Rep. 268, 85 (1996).  https://doi.org/10.1016/0370-1573(95)00059-3
  50. Yu.S. Barash and V.L. Ginzburg, Usp. Fiz. Nauk 143, 345 (1984).  https://doi.org/10.3367/UFNr.0143.198407a.0345
  51. Yu.S. Barash, Van der Waals Forces (Nauka, Moscow, 1988) (in Russian).
  52. V. Lozovski, V. Lysenko, V. Pyatnitsia, M. Spivak, Semicond. Phys. Quant. Electr. Optoelectr. 14, 489 (2011).  https://doi.org/10.15407/spqeo14.04.489
  53. Preclinical Drug Studies. Methodical Guide, edited by O.V. Stefanov (Ministry of Health of Ukraine, Kyiv, 2001) (in Ukrainian).
  54. A. Bouhelier, Microsc. Res. Techn. 69, 563 (2006).  https://doi.org/10.1002/jemt.20328
  55. A.V. Goncharenkoa, H.-Ch. Changa, and J.-K. Wang,Ultramicroscopy 107, 151 (2007).  https://doi.org/10.1016/j.ultramic.2006.06.004
  56. B.M. Ross and L.P. Lee, Nanotechnology 19, 2752001 (2008).  https://doi.org/10.1088/0957-4484/19/27/275201
  57. S. Lanone, F. Rogerieux, J. Geys, A. Dupont, E. Maillot-Marechal, J. Boczkowski, G. Lacroix, and P. Hoet, Part. Fibre Toxicol. 6, 14 (2009).  https://doi.org/10.1186/1743-8977-6-14
  58. V. Lozovski, V. Lysenko, M. Spivak, and V. Sterligov, Semicond. Phys. Quant. Electr. Optoelectr. 15, 80 (2012).  https://doi.org/10.15407/spqeo15.01.080
  59. V.A. Sterligov, Y. Men, and P.M. Lytvyn, Opt. Express 18, 43 (2010).  https://doi.org/10.1364/OE.18.000043
  60. T.A. Leskova, A.A. Maradudin, and W. Zierau, Opt. Commun. 249, 23 (2005).  https://doi.org/10.1016/j.optcom.2005.01.014
  61. V. Lozovski, S. Schrader, and A. Tsykhonya, Opt. Commun. 282, 3257 (2009).  https://doi.org/10.1016/j.optcom.2009.05.032
  62. A.A. Maradudin and D.L. Mills, Phys. Rev. B 11, 1392 (1975).  https://doi.org/10.1103/PhysRevB.11.1392
  63. J.M. Elson and R.H. Ritchie, Phys. Status Solidi B 62, 461 (1974).  https://doi.org/10.1002/pssb.2220620215
  64. A.A. Abrikosov, L.P. Gor'kov, and I.E. Dzyaloshinskij, Methods of Quantum Field Theory in Statistical Physics (Prentice Hall, Englewood Cliffs, N.J., 1963).
  65. S. Bozhevolnyi and A. Evlyukhin, Surf. Sci. 590, 173 (2005).  https://doi.org/10.1016/j.susc.2005.06.010
  66. A.D. Jaghjaian, Proc. IEEE 68, 248 (1980).  https://doi.org/10.1109/PROC.1980.11620
  67. M.V. Berry and S. Klein, J. Mod. Opt. 43, 2139 (1996).  https://doi.org/10.1080/09500349608232876
  68. Human Leukocyte Interferon Manufacture Regulations No. 302-82 (1982).
  69. Russian Federation Patent No. 2080873, date of priority 27.12.1993.
  70. Russian Federation Patent No. 2066188, date of priority 13.04.1993.
  71. Russian Federation Patent No. 2140284, date of priority 06.07.1998.
  72. N.Ya. Spivak, L.N. Lazarenko, and O.N. Mikhailenko, Interferon and the System of Mononuclear Phagocytes (Ukrainian Phytosociological Center, Kyiv ,2002) (in Russian).
  73. B.J. Marquis, Z. Liu, K.L. Braun, and C.L. Haynes, Analyst 136, 3478 (2011).  https://doi.org/10.1039/C0AN00785D
  74. B.J. Kirby and E.F. Hasselbrink, in Electorpheresis in Practice, Electrophoresis, Zeta Potential of Microfluidic Substrates: 1. Theory, Experimental Techniques, and Effects on Separations (Wiley, Weinheim, 2004), Vol. 25, p. 187.
  75. Y. Kim, R.C. Jonson, J. Li, J.T. Hupp, and G.C. Schatz, Chem. Phys. Lett. 352, 421 (2002).  https://doi.org/10.1016/S0009-2614(01)01506-8
  76. P.K. Jain, K. S.Lee, I.H. EI-Sayed, and M.A. EISayed, J. Phys. Chem. B 110, 7238 (2006).  https://doi.org/10.1021/jp057170o
  77. V. Lozovski, V. Lysenko, V. Piatnytsia, O. Scherbakov, N. Zholobak, and M. Spivak, J. Bionanosci. 6, 109 (2012).