• Українська
  • English

< | >

Current issue   Ukr. J. Phys. 2014, Vol. 58, N 1, p.68-76
https://doi.org/10.15407/ujpe58.01.0068    Paper

Stasyuk I.V., Krasnov V.O.

Institute for Condensed Matter Physics of the Nat. Acad. of Sci. of Ukraine
(1, Svientsitskii Str., Lviv 79011, Ukraine)

Energy Spectrum of the Pseudospin-Electron Model in a Dynamical Mean-Field Approach

Section: Solid matter
Original Author's Text: English

Abstract: The pseudospin-electron model in the case of infinite on-site electron repulsion is investigated. The electron energy spectrum is calculated within the framework of the dynamical mean field theory (DMFT), and the alloy analogy approximation is developed. The effect of the pseudospin-electron interaction, local asymmetry field, and tunneling-like level splitting on the existence and the number of electron subbands is investigated. The relation of the pseudospinelectron model to the problem of energy spectrum of boson-fermion mixtures in optical lattices is discussed.

Key words: pseudospin-electron model, boson-fermion mixtures, dynamical mean field theory.

References:

  1. K.A. M¨uller, Z. Phys. B 80, 193 (1990). https://doi.org/10.1007/BF01357502
  2. I.V. Stasyuk, in Order, Disorder, and Criticality, (World Sci., Singapore, 2007), vol. 2, p. 231.  https://doi.org/10.1142/9789812708762_0005
  3. T.S. Mysakovych, V.O. Krasnov, and I.V. Stasyuk, Ukr. J. Phys. 55, 228 (2010).
  4. G.D. Mahan, Phys. Rev. B 14, 780 (1976).  https://doi.org/10.1103/PhysRevB.14.780
  5. I.V. Stasyuk and I.R. Dulepa, Cond. Matt. Phys. 10, 259 (2007).  https://doi.org/10.5488/CMP.10.2.259
  6. A. Albus, F. Illuminati, and J. Eisert, Phys. Rev. A 68, 023606 (2003). https://doi.org/10.1103/PhysRevA.68.023606
  7. M. Lewenstein, L. Santos, M.A. Baranov, and H. Fehrmann, Phys. Rev. Lett. 92, 050401 (2004). https://doi.org/10.1103/PhysRevLett.92.050401
  8. M. Iskin and J.K. Freericks, Phys. Rev. A 80, 053623 (2009).  https://doi.org/10.1103/PhysRevA.80.053623
  9. A. Mering and M. Fleischhauer, Phys. Rev. A 83, 063630 (2011).  https://doi.org/10.1103/PhysRevA.83.063630
  10. F. H´ebert, G.G. Batrouni, X. Roy, and V.G. Rousseau, Phys. Rev. B 78, 184505 (2008). https://doi.org/10.1103/PhysRevB.78.184505
  11. T.S. Mysakovych, J. Phys. Stud.: Condens. Matter 22, 355601 (2010).
  12. W. Metzner and D. Vollhardt, Phys. Rev. Lett. 62, 260 (1989). https://doi.org/10.1103/PhysRevLett.62.324
  13. W. Metzner, Phys. Rev. B 43, 8549 (1991). https://doi.org/10.1103/PhysRevB.43.8549
  14. E. M¨uller-Hartmann, Z. Phys. B 74, 507 (1989). https://doi.org/10.1007/BF01311397
  15. I.V. Stasyuk and A.M. Shvaika, J. of Phys. Studies 2, 177 (1999).
  16. I.V Stasyuk, Cond. Matt. Phys. 3, 437 (2000). https://doi.org/10.5488/CMP.3.2.437
  17. M. Potthoff, T. Herrmann, T. Wegner, and W. Nolting, Phys. Stat. Sol. (b) 210, 199 (1998). https://doi.org/10.1002/(SICI)1521-3951(199811)210:1<199::AID-PSSB199>3.0.CO;2-3
  18. I.V. Stasyuk and A.M. Shvaika, Acta Phys. Polon. A 84, 293 (1993). https://doi.org/10.12693/APhysPolA.84.293
  19. I.V. Stasyuk and V.O. Krasnov, Cond. Matt. Phys. 9, 725 (2006).  https://doi.org/10.5488/CMP.9.4.725
  20. P.M. Slobodyan and I.V. Stasyuk, Theor. Math. Phys. USSR, 19, 616 (1974). https://doi.org/10.1007/BF01035575
  21. E. Altman, E. Demler, and A. Rosch, Preprint arXiv:1205.4026v1, (2012).