• Українська
  • English

< | >

Current issue   Ukr. J. Phys. 2014, Vol. 58, N 1, p.56-67
https://doi.org/10.15407/ujpe58.01.0056    Paper

Lokot L.O.

V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine
(41, Prosp. Nauky, Kyiv 03028, Ukraine; e-mail: llokot@gmail.com)

Hartree-Fock Problem of Electron-Hole Pair in Quantum Well GаN

Section: Solid matter
Original Author's Text: English

Abstract: We present microscopic calculations of the absorption spectra for GaN/AlxGa1−xN quantum well systems. Whereas the quantum well structures with the parabolic law of dispersion exhibit the usual bleaching of an exciton resonance without shifting a spectral position, the significant red-shift of an exciton peak is found with increasing the electron-hole gas density for a wurtzite quantum well. The energy of the exciton resonance for a wurtzite quantum well is found. The obtained results can be explained by the influence of the valence band structure on quantum confinement effects. The optical gain spectrum in the Hartree–Fock approximation and the Sommerfeld enhancement are calculated. A red shift of the gain spectrum in the Hartree–Fock approximation with respect to the Hartree gain spectrum is found.

Key words: Hartree–Fock approximation, electron-hole pair, wurtzite quantum well, Coulomb effects, lasers.


  1. N. Savage, Nature Photonics 1, 83 (2007).  CrossRef
  2. A. Khan, K. Balakrishnan, and T. Katona, Nature Photonics 2, 77 (2008).  https://doi.org/10.1038/nphoton.2007.293
  3. H. Kawanishi, M. Senuma, and T. Nukui, Appl. Phys. Lett. 89, 041126 (2006). https://doi.org/10.1063/1.2236792
  4. H. Kawanishi, M. Senuma, M. Yamamoto, E. Niikura, and T. Nukui, Appl. Phys. Lett. 89, 081121 (2006).  https://doi.org/10.1063/1.2338543
  5. J. Shakya, K. Knabe, K.H. Kim, J. Li, J. Y. Lin, and H. X. Jiang, Appl. Phys. Lett. 86, 091107 (2005). https://doi.org/10.1063/1.1875751
  6. R.G. Banal, M. Funato, and Y. Kawakami, Phys. Rev.B. 79, 121308(R) (2009).
  7. R.D. Meade, A.M. Rappe, K.D. Brommer, and J.D. Joannopoulos, J. Opt. Soc. Am. B 10, 328 (1993).  https://doi.org/10.1364/JOSAB.10.000328
  8. S.H. Park, D. Ahn, and S.L. Chuang, IEEE J. Quantum Electron. 43, 1175 (2007). https://doi.org/10.1109/JQE.2007.905009
  9. M.F. Schubert, J. Xu, J.K. Kim, E.F. Schubert, M.H. Kim, S. Yoon, S.M. Lee, C. Sone, T. Sakong, and Y. Park, Appl. Phys. Lett. 93, 041102 (2008).  https://doi.org/10.1063/1.2963029
  10. M.H. Kim, W. Lee, D. Zhu, M.F. Schubert, J.K. Kim, E.F. Schubert, and Y. Park, IEEE J. Sel. Top. Quantum Electron. 15, 1122 (2009). https://doi.org/10.1109/JSTQE.2009.2014395
  11. S.H. Park, D. Ahn, and J.W. Kim, Appl. Phys. Lett. 92, 171115 (2008).  https://doi.org/10.1063/1.2920187
  12. A.E. Romanov, T.J. Baker, S. Nakamura, J.S. Speck, and E.J.U. Group, J. Appl. Phys. 100, 023522 (2006).  https://doi.org/10.1063/1.2218385
  13. A.A. Yamaguchi, Appl. Phys. Lett. 94, 201104 (2009).  https://doi.org/10.1063/1.3139080
  14. H.H. Huang and Y.R. Wu, J. Appl. Phys. 106, 023106 (2009).  https://doi.org/10.1063/1.3176964
  15. M. Nido, Jpn. J. Appl. Phys., Part 2 34, L1513 (1995).  https://doi.org/10.1143/JJAP.34.L1513
  16. S. Chichibu, T. Azuhata, T. Sota, H. Amano, and I. Akasaki, Appl. Phys. Lett. 70, 2085 (1997).  https://doi.org/10.1063/1.118958
  17. D. Fu, R. Zhang, B. Wang, Z. Zhang, B. Liu, Z. Xie, X. Xiu, H. Lu, Y. Zheng, and G. Edwards, J. Appl. Phys. 106, 023714 (2009).  https://doi.org/10.1063/1.3174436
  18. P.Y. Dang and Y.R. Wu, J. Appl. Phys. 108, 083108 (2010).  https://doi.org/10.1063/1.3498805
  19. S. Fujita, T. Takagi, H. Tanaka, and S. Fujita, Phys.Status Solidi B 241, 599 (2004).  https://doi.org/10.1002/pssb.200304153
  20. W.J. Fan, J.B. Xia, P.A. Agus, S.T. Tan, S.F. Yu, and X.W. Sun, J. Appl. Phys. 99, 013702 (2006).  https://doi.org/10.1063/1.2150266
  21. S. Sasa, M. Ozaki, K. Koike, M. Yano, and M. Inoue, Appl. Phys. Lett 89, 053502 (2006). https://doi.org/10.1063/1.2261336
  22. K. Koike, I. Nakashima, K. Hashimoto, S. Sasa, M. Inoue, and M. Yano, Appl. Phys. Lett 87, 112106 (2005). https://doi.org/10.1063/1.2045558
  23. S.-H. Park and S.-L. Chuang, J. Appl. Phys. 72, 3103 (1998).
  24. M. Willatzen, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 48, 100 (2001). https://doi.org/10.1109/58.895916
  25. B.A. Auld, Acoustic Fields and Waves in Solids (Wiley, New York, 1973).
  26. L. Duggen and M. Willatzen, Phys. Rev. B 82, 205303 (2010).  https://doi.org/10.1103/PhysRevB.82.205303
  27. M. Lindberg and S. W. Koch, Phys. Rev. B. 38, 3342 (1988).  https://doi.org/10.1103/PhysRevB.38.3342
  28. W.W. Chow, S.W. Koch, and M. Sargent III, Semiconductor Laser Physics (Springer, New York, 1994). https://doi.org/10.1007/978-3-642-61225-1
  29. W.W. Chow, M. Kira, and S.W. Koch, Phys. Rev. B.60, 1947 (1999).  https://doi.org/10.1103/PhysRevB.60.1947
  30. W.W. Chow and M. Kneissl, J. Appl. Phys. 98, 114502 (2005). https://doi.org/10.1063/1.2128495
  31. G.L. Bir and G.E. Pikus, Symmetry and StrainInduced Effects in Semiconductors (Wiley, New York, 1974).  CrossRef
  32. R.S. Knox, Theory of Excitons (New York, Academic Press, 1963).
  33. L.O. Lokot, Ukr. J. Phys. 54, 963 (2009).
  34. L.O. Lokot, Ukr. J. Phys. 57, 12 (2012).
  35. M. Gell-Mann and K.A. Brueckner, Phys. Rev. 106, 364 (1956).  https://doi.org/10.1103/PhysRev.106.364
  36. C. Kittel, Quantum Theory of Solids (Wiley, New York, 1963).
  37. S. Raimes, Many-Electron Theory (North-Holland, Amsterdam, 1972).
  38. R.D. Mattuck, A Guide to Feynman Diagrams in The Many-Body Problem (McGraw-Hill, New York, 1967).
  39. H. Haug and S. Schmitt-Rink, Prog. Quant. Electr. 9, 3 (1984). https://doi.org/10.1016/0079-6727(84)90026-0