• Українська
  • English

< | >

Current issue   Ukr. J. Phys. 2014, Vol. 58, N 1, p.40-55
https://doi.org/10.15407/ujpe58.01.0040    Paper

Syngayivska G.I., Korotyeyev V.V.

V.E. Lashkarev Institute of Semiconductor Physics, Department of Theoretical Physics,
Nat. Acad. of Sci. of Ukraine
(41, Nauky Ave., Kyiv 03028, Ukraine; e-mail: koroteev@ukr.net)

Electrical and High-Frequency Properties of Compensated GaN under Electron Streaming Conditions

Section: Solid matter
Original Author's Text: Ukrainian

Abstract: Conditions required for the streaming effect and the optical-phonon transit-time resonance to take place in a compensated bulk GaN are analyzed in detail. Monte Carlo calculations of the high-frequency differential electron mobility are carried out. It is shown that the negative dynamic differential mobility can be realized in the terahertz frequency range, at low lattice temperatures of 30–77 K, and applied electric fields of 3–10 kV/cm. New manifestations of the streaming effect are revealed, namely, the anisotropy of the dynamic differential mobility and a specific behavior of the diffusion coefficient in the direction perpendicular to the applied electric field. The theory of terahertz radiation transmission through the structure with an epitaxial GaN layer is developed. Conditions for the amplification of electromagnetic waves in the frequency range of 0.5–2 THz are obtained. The polarization dependence of the radiation transmission coefficient through the structure in electric fields above 1 kV/cm is found.

Key words: streaming, dynamic differential mobility, diffusion coefficient, Fr¨ohlich constant, distribution function, transit-time frequency.


  1. W. Shockley, Bell Syst. Tech. J. 30, 990 (1951). https://doi.org/10.1002/j.1538-7305.1951.tb03692.x
  2. I.M. Dykman and P.M. Tomchuk, Transport Phenomena and Fluctuations in Semiconductors (Naukova Dumka, Kyiv, 1981) (in Russian).
  3. D.K. Ferry, Semiconductors (Macmillan, New York, 1991), Ch. 10.
  4. V.E. Gantmakher and Y.B. Levinson, Carrier Scattering in Metals and Semiconductors (North-Holland, Amsterdam, 1987).
  5. G.A. Baraff, Phys. Rev. 128, 2507 (1962)  https://doi.org/10.1103/PhysRev.128.2507; Phys. Rev. A 133, 26 (1964).  https://doi.org/10.1103/PhysRev.133.A26
  6. E. Vasilyus and E. Levinson, Zh. Eksp. Teor. Fiz. 50, 1660 (1966); 52, 1013 (1967).
  7. Z.S. Gribnikov and V.A. Kochelap, Zh. Eksp. Teor. Fiz. 58, 1046 (1970).
  8. W. Cox, J. Phys. Condens.Matter 2, 4849 (1990).  https://doi.org/10.1088/0953-8984/2/22/006
  9. W. Fawcett, A.D. Boardman, and S. Swain, J. Chem. Solids 31, 1963 (1970).  https://doi.org/10.1016/0022-3697(70)90001-6
  10. C. Jacoboni and L. Reggiani, Rev. Mod. Phys. 55, 645 (1983).  https://doi.org/10.1103/RevModPhys.55.645
  11. A. Matulionis, J. Pozela, and A. Reklaitis, Phys. Status Solidi A 31, 83 (1975).  https://doi.org/10.1002/pssa.2210310109
  12. R.C. Curby and D.K. Ferry, Phys. Status Solidi A 20, 569 (1973).  https://doi.org/10.1002/pssa.2210200218
  13. F.M. Peeters, W. Van Puymbroeck, and J.T. Devreese, Phys. Rev. B 31, 5322 (1985).  https://doi.org/10.1103/PhysRevB.31.5322
  14. T.W. Hickmott, P.M. Solomon, F.F. Fang, F. Stern, R. Fischer, and H. Morkos, Phys. Rev. Lett. 52, 2053 (1984). https://doi.org/10.1103/PhysRevLett.52.2053
  15. P-F Lu, D.C. Tsui, and H.M. Cox, Phys. Rev. B 35, 9659 (1987).  https://doi.org/10.1103/PhysRevB.35.9659
  16. C.B. Hanna, E.S. Hellman, and R.B. Laughlin, Phys. Rev B 34, 5475 (1986). https://doi.org/10.1103/PhysRevB.34.5475
  17. M. Levinstein, S. Rumyantsev, and M. Shur, Properties of Advanced Semiconductor Materials: GaN, AlN, InN, BN, SiC, SiGe (Wiley, New York, 2001).
  18. A.A. Andronov and V.A. Kozlov, Pis'ma Zh. Eksp. Teor. Fiz. 17, 124 (1973).
  19. Ya.I. Alber, A.A. Andronov, V.A. Valov, V.A. Kozlov,A.M. Lerner, and I.P. Ryazantseva, Zh. Eksp. Teor. Fiz. 72, 1031 (1977).
  20. L.E. Vorob'ev, S.N. Danilov, V.N. Tulupenko, and D.A. Firsov, JETP Lett. 73, 219 (2001).  https://doi.org/10.1134/1.1371057
  21. N. Ishida and T. Kurosawa, Jpn. J. Appl. Phys. 64, 2994 (1995).  https://doi.org/10.1143/JPSJ.64.2994
  22. P.N. Shiktorov, Sov. Phys. – Collect. 25, 59 (1985).
  23. V.A. Kozlov, A.V. Nikolaev, and A.V. Samokhvalov, Semicond. Sci. Technol. 19, s99 (2004)  CrossRef; E. Starikov, P. Shiktorov, V. Gruzinskis, L. Varani, C. Palermo, J.-F. Millithaler, and L. Reggiani, J. Phys. Condens. Matter 20, 1 (2008).  https://doi.org/10.1088/0953-8984/20/38/384209
  24. E.A. Barry, K.W. Kim, and V.A. Kochelap, Phys. Status Solidi B 228, 571 (2001)  https://doi.org/10.1002/1521-3951(200111)228:2<571::AID-PSSB571>3.0.CO;2-I; Appl. Phys. Lett. 80, 2317 (2002).  https://doi.org/10.1063/1.1464666
  25. V.M. Polyakov and F. Schwierz, J. Appl. Phys. 100, 103704 (2006).  https://doi.org/10.1063/1.2365381
  26. V.V. Korotyeyev, G.I. Syngayivska, V.A. Kochelap, and A.A. Klimov, Semicond. Phys. Quant. Electr. Optoelectr. 12, 328 (2009).
  27. E. Starikov, P. Shiktorov, V. Gruzinskis, L. Reggiani, L. Varani, J.C. Vaissiere, and J.H. Zhao, J. Appl. Phys. 89, 1161 (2001).  https://doi.org/10.1063/1.1334924
  28. E. Starikov, P. Shiktorov, V. Gruzinskis, L. Regiani, L. Varani, J.C. Vaissiere, and J.H. Zhao, IEEE Trans. Electron Devices 48, 438 (2001)  https://doi.org/10.1109/16.906433; Phys. Status Solidi A 198, 247 (2002).
  29. E. Starikov, P. Shiktorov, V. Gruzinskis, L. Varani, C. Palermo, J-F. Millithaler, and L. Regiani, J. Phys. Condens. Matter 20, 384209 (2008)  https://doi.org/10.1088/0953-8984/20/38/384209; Phys.Rev. B 76, 045333 (2007).  https://doi.org/10.1103/PhysRevB.76.045333
  30. J.T. Lu and J.C. Cao, Semicond. Sci. Technol. 20, 829 (2005).  https://doi.org/10.1088/0268-1242/20/8/034
  31. V.V. Korotyeyev, V.A. Kochelap, K.W. Kim, and D.L. Woolard, Appl. Phys. Lett. 82, 2643 (2003).  https://doi.org/10.1063/1.1569039
  32. K.W. Kim, V.V. Korotyeyev, V.A. Kochelap, A.A. Klimov, and D.L. Woolard, J. Appl. Phys. 96, 6488 (2004).  https://doi.org/10.1063/1.1811388
  33. J.T. Lu, J.C. Cao, and S.L. Feng, Phys. Rev. B 73, 195326 (2006).  https://doi.org/10.1103/PhysRevB.73.195326
  34. V.N. Sokolov, K.W. Kim, V.A. Kochelap, and D.L. Woolard, Appl. Phys. Lett. 84, 3630 (2002).  https://doi.org/10.1063/1.1738518
  35. V.V. Mitin, V.A. Kochelap, and M. Stroscio, Quantum Heterostructures for Microelectronics and Optoelectronics (Cambridge Univ. Press, New York, 1999).
  36. V.L. Bonch-Bruevich and S.G. Kalashnikov, Semiconductor Physics (Nauka, Moscow, 1977) (in Russian).
  37. M.S. Gupta, J. Appl. Phys. 49, 2837 (1978) https://doi.org/10.1063/1.325164; R. Fauquembergue, J. Zimmermann, A. Kaszynski, and E. Constant, J. Appl. Phys. 51, 1065 (1980). https://doi.org/10.1063/1.327713
  38. M.A. Littlejohn, J.R. Hauser, and T.H. Glisson, Appl.Phys. Lett. 26, 625 (1975).  https://doi.org/10.1063/1.88002
  39. D.C. Look and J.R. Sizelove, Appl. Phys. Lett. 79,1133 (2001).  https://doi.org/10.1063/1.1394954
  40. L. Bouguen, S. Contreras, B. Jouault, L. Konczewicz, J. Camassel, Y. Cordier, M. Azize, S. Chenot, and N. Baron, Appl. Phys. Lett 92, 043504 (2008).  https://doi.org/10.1063/1.2838301
  41. V. Bareikis, A. Matulionis, J. Poˇzela, S. Aˇsmontas, A. Reklaitis, A. Galdikas, R. Miliuˇsyt˙e, and E. Starikovas, Hot Electron Diffusion (Mokslas, Vilnius, 1981) (in Russian).
  42. E. Starikov, P. Shiktorov, V. Gruzinskis, L. Reggiani, L. Varani, J.C. Vaissiere. and C. Palermo, Semicond. Sci. Technol. 20, 279 (2005).  https://doi.org/10.1088/0268-1242/20/3/004
  43. D.J. Bartelink and G.Perski, Appl. Phys. Lett. 16, 191 (1970).  https://doi.org/10.1063/1.1653157
  44. J. Zimmermann, Y. Leroy, and E. Constant, J. Appl. Phys. 49, 3378 (1978).  https://doi.org/10.1063/1.325293
  45. P.A. Lebwohl, J. Appl. Phys. 44, 1744 (1973).  https://doi.org/10.1063/1.1662441
  46. T. Laurent, R. Sharma, J. Torres, P. Nouvel, S. Blin, L. Varani, Y. Cordier, M. Chmielowska, S. Chenot, J.-P. Faurie, B. Beaumont, P. Shiktorov, E. Starikov, V. Gruzinskis, V.V. Korotyeyev, and V.A. Kochelap, Appl. Phys. Lett. 99, 082101 (2011).  https://doi.org/10.1063/1.3627183