• Українська
  • English

< | Next issue>

Current issue   Ukr. J. Phys. 2014, Vol. 58, N 1, p.91-102
https://doi.org/10.15407/ujpe58.01.0091    Paper

Lyashenko I.A., Zaskoka A.M.

Sumy State University
(2, Rimskii-Korsakov Str., Sumy 40007, Ukraine; e-mail: nabla04@ukr.net, zaskoka23@ukr.net)

Stick-Slip Mode of Boundary Friction as the First-Order Phase Transition

Section: General problems of theoretical physics
Original Author's Text: Ukrainian

Abstract: A tribological system consisting of two contacting blocks has been considered. One of them is arranged between two springs, the other is driven periodically. The kinetics of the system has been studied in the boundary friction mode, when an ultrathin lubricant film is contained between the atomically smooth surfaces. In order to describe the film state, the expression for the free energy density is used in the form of an expansion in a power series in the order parameter, the latter being reduced to the shear modulus of a lubricant. The stick-slip mode is shown to be realized in a wide range of parameters, being a result of the periodic first-order phase transitions between kinetic friction regimes. The behavior of the system governed by internal and external parameters has been predicted.

Key words: ultrathin lubricant film, boundary mode of friction, tribological system.

References:

  1. B.N.J. Persson, Sliding Friction. Physical Principles and Applications (Springer, Berlin, 2000).  https://doi.org/10.1007/978-3-662-04283-0
  2. V.L. Popov, Kontaktmechanik und Reibung. Ein Lehrund Anwendungsbuch von der Nanotribologie bis zur numerischen Simulation (Springer, Berlin, 2009).
  3. J. Israelachvili, Surf. Sci. Rep. 14, 109 (1992). https://doi.org/10.1016/0167-5729(92)90015-4
  4. J. Ringlein and M.O. Robbins, Am. J. Phys. 72, 884 (2004). https://doi.org/10.1119/1.1715107
  5. H. Yoshizawa and J. Israelachvili, J. Phys. Chem. 97,11300 (1993). https://doi.org/10.1021/j100145a031
  6. A.D. Berman, W.A. Ducker, and I.N. Israelachvili, Langmuir 12, 4559 (1996). https://doi.org/10.1021/la950896z
  7. V.L. Popov, Tech. Phys. 46, 605 (2001). https://doi.org/10.1134/1.1372955
  8. I.A. Lyashenko, A.V. Khomenko, and L.S. Metlov,Tech. Phys. 55, 1193 (2010). https://doi.org/10.1134/S1063784210080190
  9. A.E. Filippov, J. Klafter, and M. Urbakh, Phys. Rev. Lett. 92, 135503 (2004). https://doi.org/10.1103/PhysRevLett.92.135503
  10. J.M. Carlson and A.A. Batista, Phys. Rev. E 53, 4153 (1996). https://doi.org/10.1103/PhysRevE.53.4153
  11. A.V. Khomenko and I.A. Lyashenko, J. Phys. Studies 11, 268 (2007).
  12. A.V. Khomenko and I.A. Lyashenko, Tech. Phys. 52, 1239 (2007). https://doi.org/10.1134/S1063784207090241
  13. A.V. Khomenko, I.A. Lyashenko, and V.N. Borisyuk, Ukr J. Phys. 54, 1139 (2009).
  14. A.V. Khomenko, I.A. Lyashenko, and V.N. Borisyuk, Fluct. Noise Lett. 9, 19 (2010). https://doi.org/10.1142/S0219477510000046
  15. A.L. Demirel and S. Granick, J. Chem. Phys. 109, 6889 (1998). https://doi.org/10.1063/1.477256
  16. G. Reiter, A.L. Demirel, J. Peanasky, L.L. Cai, and S. Granick, J. Chem. Phys. 101, 2606 (1994). https://doi.org/10.1063/1.467633
  17. A.V. Khomenko and I.A. Lyashenko, Phys. Sol. State 49, 936 (2007). https://doi.org/10.1134/S1063783407050228
  18. A.V. Khomenko and I.A. Lyashenko, Tech. Phys. 55, 26 (2010). https://doi.org/10.1134/S1063784210010056
  19. A.V. Khomenko and I.A. Lyashenko, Journal of Friction and Wear31, 308 (2010). https://doi.org/10.3103/S1068366610040100
  20. V.L. Popov, Solid State Commun. 115, 369 (2000). https://doi.org/10.1016/S0038-1098(00)00179-4
  21. L.D. Landau and E.M. Lifshits, Statistical Physics, Part 1 (Pergamon Press, Oxford, 1980).
  22. A. Lemaˆıtre and J. Carlson, Phys. Rev. E 69, 061611 (2004). https://doi.org/10.1103/PhysRevE.69.061611
  23. A. Lemaˆıtre, Phys. Rev. Lett. 89, 195503 (2002). https://doi.org/10.1103/PhysRevLett.89.195503
  24. J.N. Israelachvili, Intermolecular and Surface Forces: With Applications to Colloidal and Biological Systems (Academic Press, New York, 1991).
  25. J.N. Israelachvili, Chemtracts Analyt. Phys. Chem. 1, 1 (1989).
  26. C.-R. Yang, Y.-C. Chiou, and R.-T. Lee, Tribol. Int. 32, 443 (1999). https://doi.org/10.1016/S0301-679X(99)00074-2
  27. C.-R. Yang, R.-T. Lee, Y.-C. Chiou, Tribol. Int. 30, 719 (1997). https://doi.org/10.1016/S0301-679X(97)00038-8
  28. G. Luengo, J. Israelachvili, and S. Granick, Wear 200, 328 (1996). https://doi.org/10.1016/S0043-1648(96)07248-1
  29. I.M. Sivebaek, V.N. Samoilov, and B.N.J. Persson, Phys. Rev. Lett. 108, 036102 (2012). https://doi.org/10.1103/PhysRevLett.108.036102
  30. I.A. Lyashenko, Tech. Phys. 56, 869 (2011). https://doi.org/10.1134/S1063784211060168
  31. I.A. Lyashenko, Tech. Phys. 57, 17 (2012). https://doi.org/10.1134/S1063784212010173
  32. I.A. Lyashenko, A.V. Khomenko, and L.S. Metlov, Ukr. J. Phys. 56, 278 (2011).
  33. I.A. Lyashenko, A.V. Khomenko, and L.S. Metlov, Tribol. Int. 44, 476 (2011). https://doi.org/10.1016/j.triboint.2010.12.005
  34. V.L. Popov, Tech. Phys. Lett. 25, 815 (1999). https://doi.org/10.1134/1.1262645
  35. A.I. Olemskoi, Physica A 310, 223 (2002). https://doi.org/10.1016/S0378-4371(02)00596-4
  36. O.M. Braun, N. Manini, and E. Tosatti, Phys. Rev. B 78, 195402 (2008). https://doi.org/10.1103/PhysRevB.78.195402
  37. I.S. Aranson, L.S. Tsimring, and V.M. Vinokur, Phys. Rev. B 65, 125402 (2002). https://doi.org/10.1103/PhysRevB.65.125402
  38. L.D. Landau and I.M. Khalatnikov, Dokl. Akad. Nauk SSSR 96, 469 (1954).
  39. I.A. Lyashenko, Tech. Phys. 56, 701 (2011). https://doi.org/10.1134/S1063784211050227
  40. A.E. Filippov, M. Dienwiebel, J.W.M. Frenken, J. Klafter, and M. Urbakh, Phys. Rev. Lett. 100, 046102 (2008). https://doi.org/10.1103/PhysRevLett.100.046102
  41. M. Hirano, Wear 254, 932 (2003). https://doi.org/10.1016/S0043-1648(03)00295-3